Parameter Tuning

RecBole is featured in the capability of automatic parameter (or hyper-parameter) tuning. One can readily optimize a given model according to the provided hyper-parameter spaces.

The general steps are given as follows:

To begin with, the user has to claim an HyperTuning instance in the running python file (e.g., run.py):

from recbole.trainer import HyperTuning
from recbole.quick_start import objective_function

hp = HyperTuning(objective_function=objective_function, algo='exhaustive',
                params_file='model.hyper', fixed_config_file_list=['example.yaml'])

objective_function is the optimization objective, the input of objective_function is the parameter, and the output is the optimal result of these parameters. The users can design this objective_function according to their own requirements. The user can also use an encapsulated objective_function, that is:

def objective_function(config_dict=None, config_file_list=None):

    config = Config(config_dict=config_dict, config_file_list=config_file_list)
    init_seed(config['seed'])
    dataset = create_dataset(config)
    train_data, valid_data, test_data = data_preparation(config, dataset)
    model = get_model(config['model'])(config, train_data).to(config['device'])
    trainer = get_trainer(config['MODEL_TYPE'], config['model'])(config, model)
    best_valid_score, best_valid_result = trainer.fit(train_data, valid_data, verbose=False)
    test_result = trainer.evaluate(test_data)

    return {
        'best_valid_score': best_valid_score,
        'valid_score_bigger': config['valid_metric_bigger'],
        'best_valid_result': best_valid_result,
        'test_result': test_result
    }

algo is the optimization algorithm. RecBole realize this module based on hyperopt. In addition, we also support grid search tunning method.

from hyperopt import tpe

# hyperopt 自带的优化算法
hp1 = HyperTuning(algo=tpe.suggest)

# Grid Search
hp2 = HyperTuning(algo='exhaustive')

params_file is the ranges of the parameters, which is exampled as (e.g., model.hyper):

learning_rate loguniform -8,0
embedding_size choice [64,96,128]
mlp_hidden_size choice ['[64,64,64]','[128,128]']

Each line represent a parameter and the corresponding search range. There are three components: parameter name, range type, range.

HyperTuning supports four range types, the details are as follows:

range type

  range

  discription

choice

options(list)

search in options

uniform

low(int),high(int)

search in uniform distribution: (low,high)

loguniform

low(int),high(int)

search in uniform distribution: exp(uniform(low,high))

quniform

low(int),high(int),q(int)

search in uniform distribution: round(uniform(low,high)/q)*q

It should be noted that if the parameters are list and the range type is choice, then the inner list should be quoted, e.g., mlp_hidden_size in model.hyper.

fixed_config_file_list is the fixed parameters, e.g., dataset related parameters and evaluation parameters. These parameters should be aligned with the format in config_file_list. See details as Config Settings.

Calling method of HyperTuning like:

from recbole.trainer import HyperTuning
from recbole.quick_start import objective_function

hp = HyperTuning(objective_function=objective_function, algo='exhaustive',
                params_file='model.hyper', fixed_config_file_list=['example.yaml'])

# run
hp.run()
# export result to the file
hp.export_result(output_file='hyper_example.result')
# print best parameters
print('best params: ', hp.best_params)
# print best result
print('best result: ')
print(hp.params2result[hp.params2str(hp.best_params)])

Run like:

python run.py --dataset=[dataset_name] --model=[model_name]

dataset_name is the dataset name, model_name is the model name, which can be controlled by the command line or the yaml configuration files.

For example:

dataset: ml-100k
model: BPR

A simple example is to search the learning_rate and embedding_size in BPR, that is,

running_parameters:
{'embedding_size': 128, 'learning_rate': 0.005}
current best valid score: 0.3795
current best valid result:
{'recall@10': 0.2008, 'mrr@10': 0.3795, 'ndcg@10': 0.2151, 'hit@10': 0.7306, 'precision@10': 0.1466}
current test result:
{'recall@10': 0.2186, 'mrr@10': 0.4388, 'ndcg@10': 0.2591, 'hit@10': 0.7381, 'precision@10': 0.1784}

...

best params:  {'embedding_size': 64, 'learning_rate': 0.001}
best result: {
    'best_valid_result': {'recall@10': 0.2169, 'mrr@10': 0.4005, 'ndcg@10': 0.235, 'hit@10': 0.7582, 'precision@10': 0.1598}
    'test_result': {'recall@10': 0.2368, 'mrr@10': 0.4519, 'ndcg@10': 0.2768, 'hit@10': 0.7614, 'precision@10': 0.1901}
}