Customize Models¶
Here, we present how to develop a new model, and apply it to the RecBole.
RecBole supports General, Context-aware, Sequential and Knowledge-based recommendation.
Create a New Model Class¶
To begin with, we should create a new model implementing from one of GeneralRecommender
,
ContextRecommender
, SequentialRecommender
,
KnowledgeRecommender
.
For example, we would like to develop a general model named as NewModel and write the code to newmodel.py.
from recbole.model.abstract_recommender import GeneralRecommender
class NewModel(GeneralRecommender):
pass
Then, we need to indicate input_type
,
RecBole supports two input types: POINTWISE
and PAIRWISE
.
POINTWISE
will give the item
and the corresponding label
, which is suitable for pointwise loss, e.g., Cross Entropy Loss.
PAIRWISE
will give the item pos_item
and neg_item
, which is suitable for pairwise loss, e.g., BPR Loss.
Suppose we want to use pairwise loss:
from recbole.utils import InputType
from recbole.model.abstract_recommender import GeneralRecommender
class NewModel(GeneralRecommender):
input_type = InputType.PAIRWISE
pass
Implement __init__()¶
Then we redefine __init__()
method, __init__()
is used to initialize the model, including loading the dataset information, model parameters, define the model structure and initializing methods.
__init__()
input the parameters of config
. and dataset
, where config
is used to input parameters,
dataset
is leveraged to input datasets including n_users
, n_items
.
Here, we suppose the NewModel encode the users and items, where we use xavier_normal_initialization()
to initialize the parameters, and use inner product to compute the score.
import torch
import torch.nn as nn
from recbole.model.loss import BPRLoss
from recbole.model.init import xavier_normal_initialization
def __init__(self, config, dataset):
super(NewModel, self).__init__(config, dataset)
# load dataset info
self.n_users = dataset.user_num
self.n_items = dataset.item_num
# load parameters info
self.embedding_size = config['embedding_size']
# define layers and loss
self.user_embedding = nn.Embedding(self.n_users, self.embedding_size)
self.item_embedding = nn.Embedding(self.n_items, self.embedding_size)
self.loss = BPRLoss()
# parameters initialization
self.apply(xavier_normal_initialization)
Implement calcualte_loss()¶
Then we define the calculate_loss()
method, calculate_loss()
is used to compute the loss,
the input parameters are Interaction
, at last the method return a torch.Tensor
for computing the BP information.
import torch
def calculate_loss(self, interaction):
user = interaction[self.USER_ID]
pos_item = interaction[self.ITEM_ID]
neg_item = interaction[self.NEG_ITEM_ID]
user_e = self.user_embedding(user) # [batch_size, embedding_size]
pos_item_e = self.item_embedding(pos_item) # [batch_size, embedding_size]
neg_item_e = self.item_embedding(neg_item) # [batch_size, embedding_size]
pos_item_score = torch.mul(user_e, pos_item_e).sum(dim=1) # [batch_size]
neg_item_score = torch.mul(user_e, neg_item_e).sum(dim=1) # [batch_size]
loss = self.loss(pos_item_score, neg_item_score) # []
return loss
Implement predict()¶
At last, we define the predict()
method, which is used to compute the score for a give user-item pair.
The input is a Interaction
, and the output is a score.
import torch
def predict(self, interaction):
user = interaction[self.USER_ID]
item = interaction[self.ITEM_ID]
user_e = self.user_embedding(user) # [batch_size, embedding_size]
item_e = self.item_embedding(item) # [batch_size, embedding_size]
scores = torch.mul(user_e, item_e).sum(dim=1) # [batch_size]
return scores
If you would like to evaluate the full ranking in the NewModel, RecBole also supports an accelerated predict method.
import torch
def full_sort_predict(self, interaction):
user = interaction[self.USER_ID]
user_e = self.user_embedding(user) # [batch_size, embedding_size]
all_item_e = self.item_embedding.weight # [n_items, batch_size]
scores = torch.matmul(user_e, all_item_e.transpose(0, 1)) # [batch_size, n_items]
return scores
This method will recall this method to accelerate the ranking.
Complete Code¶
Thus the final implemented NewModel is:
import torch
import torch.nn as nn
from recbole.utils import InputType
from recbole.model.abstract_recommender import GeneralRecommender
from recbole.model.loss import BPRLoss
from recbole.model.init import xavier_normal_initialization
class NewModel(GeneralRecommender):
input_type = InputType.PAIRWISE
def __init__(self, config, dataset):
super(NewModel, self).__init__(config, dataset)
# load dataset info
self.n_users = dataset.user_num
self.n_items = dataset.item_num
# load parameters info
self.embedding_size = config['embedding_size']
# define layers and loss
self.user_embedding = nn.Embedding(self.n_users, self.embedding_size)
self.item_embedding = nn.Embedding(self.n_items, self.embedding_size)
self.loss = BPRLoss()
# parameters initialization
self.apply(xavier_normal_initialization)
def calculate_loss(self, interaction):
user = interaction[self.USER_ID]
pos_item = interaction[self.ITEM_ID]
neg_item = interaction[self.NEG_ITEM_ID]
user_e = self.user_embedding(user) # [batch_size, embedding_size]
pos_item_e = self.item_embedding(pos_item) # [batch_size, embedding_size]
neg_item_e = self.item_embedding(neg_item) # [batch_size, embedding_size]
pos_item_score = torch.mul(user_e, pos_item_e).sum(dim=1) # [batch_size]
neg_item_score = torch.mul(user_e, neg_item_e).sum(dim=1) # [batch_size]
loss = self.loss(pos_item_score, neg_item_score) # []
return loss
def predict(self, interaction):
user = interaction[self.USER_ID]
item = interaction[self.ITEM_ID]
user_e = self.user_embedding(user) # [batch_size, embedding_size]
item_e = self.item_embedding(item) # [batch_size, embedding_size]
scores = torch.mul(user_e, item_e).sum(dim=1) # [batch_size]
return scores
def full_sort_predict(self, interaction):
user = interaction[self.USER_ID]
user_e = self.user_embedding(user) # [batch_size, embedding_size]
all_item_e = self.item_embedding.weight # [n_items, batch_size]
scores = torch.matmul(user_e, all_item_e.transpose(0, 1)) # [batch_size, n_items]
return scores
Then, we can use NewModel in RecBole as follows (e.g., run.py):
from logging import getLogger
from recbole.utils import init_logger, init_seed
from recbole.trainer import Trainer
from newmodel import NewModel
from recbole.config import Config
from recbole.data import create_dataset, data_preparation
if __name__ == '__main__':
config = Config(model=NewModel, dataset='ml-100k')
init_seed(config['seed'], config['reproducibility'])
# logger initialization
init_logger(config)
logger = getLogger()
logger.info(config)
# dataset filtering
dataset = create_dataset(config)
logger.info(dataset)
# dataset splitting
train_data, valid_data, test_data = data_preparation(config, dataset)
# model loading and initialization
model = NewModel(config, train_data).to(config['device'])
logger.info(model)
# trainer loading and initialization
trainer = Trainer(config, model)
# model training
best_valid_score, best_valid_result = trainer.fit(train_data, valid_data)
# model evaluation
test_result = trainer.evaluate(test_data)
logger.info('best valid result: {}'.format(best_valid_result))
logger.info('test result: {}'.format(test_result))
Then, we can run NewModel:
python run.py --embedding_size=64
Note, please remember to configure the model parameters
(such as embedding_size
) through config files, parameter dicts or command line.