Source code for recbole.trainer.trainer

# @Time   : 2020/6/26
# @Author : Shanlei Mu
# @Email  : slmu@ruc.edu.cn

# UPDATE:
# @Time   : 2020/8/7, 2020/9/26, 2020/9/26, 2020/10/01, 2020/9/16, 2020/10/8, 2020/10/15
# @Author : Zihan Lin, Yupeng Hou, Yushuo Chen, Shanlei Mu, Xingyu Pan, Hui Wang, Xinyan Fan
# @Email  : linzihan.super@foxmail.com, houyupeng@ruc.edu.cn, chenyushuo@ruc.edu.cn, slmu@ruc.edu.cn, panxy@ruc.edu.cn, hui.wang@ruc.edu.cn, xinyan.fan@ruc.edu.cn

r"""
recbole.trainer.trainer
################################
"""

import os
import itertools
import torch
import torch.optim as optim
from torch.nn.utils.clip_grad import clip_grad_norm_
import numpy as np
import matplotlib.pyplot as plt

from time import time
from logging import getLogger

from recbole.evaluator import TopKEvaluator, LossEvaluator
from recbole.data.interaction import Interaction
from recbole.utils import ensure_dir, get_local_time, early_stopping, calculate_valid_score, dict2str, \
    DataLoaderType, KGDataLoaderState, EvaluatorType


[docs]class AbstractTrainer(object): r"""Trainer Class is used to manage the training and evaluation processes of recommender system models. AbstractTrainer is an abstract class in which the fit() and evaluate() method should be implemented according to different training and evaluation strategies. """ def __init__(self, config, model): self.config = config self.model = model
[docs] def fit(self, train_data): r"""Train the model based on the train data. """ raise NotImplementedError('Method [next] should be implemented.')
[docs] def evaluate(self, eval_data): r"""Evaluate the model based on the eval data. """ raise NotImplementedError('Method [next] should be implemented.')
[docs]class Trainer(AbstractTrainer): r"""The basic Trainer for basic training and evaluation strategies in recommender systems. This class defines common functions for training and evaluation processes of most recommender system models, including fit(), evaluate(), resume_checkpoint() and some other features helpful for model training and evaluation. Generally speaking, this class can serve most recommender system models, If the training process of the model is to simply optimize a single loss without involving any complex training strategies, such as adversarial learning, pre-training and so on. Initializing the Trainer needs two parameters: `config` and `model`. `config` records the parameters information for controlling training and evaluation, such as `learning_rate`, `epochs`, `eval_step` and so on. More information can be found in [placeholder]. `model` is the instantiated object of a Model Class. """ def __init__(self, config, model): super(Trainer, self).__init__(config, model) self.logger = getLogger() self.learner = config['learner'] self.learning_rate = config['learning_rate'] self.epochs = config['epochs'] self.eval_step = min(config['eval_step'], self.epochs) self.stopping_step = config['stopping_step'] self.clip_grad_norm = config['clip_grad_norm'] self.valid_metric = config['valid_metric'].lower() self.valid_metric_bigger = config['valid_metric_bigger'] self.test_batch_size = config['eval_batch_size'] self.device = config['device'] self.checkpoint_dir = config['checkpoint_dir'] ensure_dir(self.checkpoint_dir) saved_model_file = '{}-{}.pth'.format(self.config['model'], get_local_time()) self.saved_model_file = os.path.join(self.checkpoint_dir, saved_model_file) self.start_epoch = 0 self.cur_step = 0 self.best_valid_score = -1 self.best_valid_result = None self.train_loss_dict = dict() self.optimizer = self._build_optimizer() self.eval_type = config['eval_type'] if self.eval_type == EvaluatorType.INDIVIDUAL: self.evaluator = LossEvaluator(config) else: self.evaluator = TopKEvaluator(config) self.item_tensor = None self.tot_item_num = None def _build_optimizer(self): r"""Init the Optimizer Returns: torch.optim: the optimizer """ if self.learner.lower() == 'adam': optimizer = optim.Adam(self.model.parameters(), lr=self.learning_rate) elif self.learner.lower() == 'sgd': optimizer = optim.SGD(self.model.parameters(), lr=self.learning_rate) elif self.learner.lower() == 'adagrad': optimizer = optim.Adagrad(self.model.parameters(), lr=self.learning_rate) elif self.learner.lower() == 'rmsprop': optimizer = optim.RMSprop(self.model.parameters(), lr=self.learning_rate) elif self.learner.lower() == 'sparse_adam': optimizer =optim.SparseAdam(self.model.parameters(), lr=self.learning_rate) else: self.logger.warning('Received unrecognized optimizer, set default Adam optimizer') optimizer = optim.Adam(self.model.parameters(), lr=self.learning_rate) return optimizer def _train_epoch(self, train_data, epoch_idx, loss_func=None): r"""Train the model in an epoch Args: train_data (DataLoader): The train data. epoch_idx (int): The current epoch id. loss_func (function): The loss function of :attr:`model`. If it is ``None``, the loss function will be :attr:`self.model.calculate_loss`. Defaults to ``None``. Returns: float/tuple: The sum of loss returned by all batches in this epoch. If the loss in each batch contains multiple parts and the model return these multiple parts loss instead of the sum of loss, It will return a tuple which includes the sum of loss in each part. """ self.model.train() loss_func = loss_func or self.model.calculate_loss total_loss = None for batch_idx, interaction in enumerate(train_data): interaction = interaction.to(self.device) self.optimizer.zero_grad() losses = loss_func(interaction) if isinstance(losses, tuple): loss = sum(losses) loss_tuple = tuple(per_loss.item() for per_loss in losses) total_loss = loss_tuple if total_loss is None else tuple(map(sum, zip(total_loss, loss_tuple))) else: loss = losses total_loss = losses.item() if total_loss is None else total_loss + losses.item() self._check_nan(loss) loss.backward() if self.clip_grad_norm: clip_grad_norm_(self.model.parameters(), **self.clip_grad_norm) self.optimizer.step() return total_loss def _valid_epoch(self, valid_data): r"""Valid the model with valid data Args: valid_data (DataLoader): the valid data Returns: float: valid score dict: valid result """ valid_result = self.evaluate(valid_data, load_best_model=False) valid_score = calculate_valid_score(valid_result, self.valid_metric) return valid_score, valid_result def _save_checkpoint(self, epoch): r"""Store the model parameters information and training information. Args: epoch (int): the current epoch id """ state = { 'config': self.config, 'epoch': epoch, 'cur_step': self.cur_step, 'best_valid_score': self.best_valid_score, 'state_dict': self.model.state_dict(), 'optimizer': self.optimizer.state_dict(), } torch.save(state, self.saved_model_file)
[docs] def resume_checkpoint(self, resume_file): r"""Load the model parameters information and training information. Args: resume_file (file): the checkpoint file """ resume_file = str(resume_file) checkpoint = torch.load(resume_file) self.start_epoch = checkpoint['epoch'] + 1 self.cur_step = checkpoint['cur_step'] self.best_valid_score = checkpoint['best_valid_score'] # load architecture params from checkpoint if checkpoint['config']['model'].lower() != self.config['model'].lower(): self.logger.warning('Architecture configuration given in config file is different from that of checkpoint. ' 'This may yield an exception while state_dict is being loaded.') self.model.load_state_dict(checkpoint['state_dict']) # load optimizer state from checkpoint only when optimizer type is not changed self.optimizer.load_state_dict(checkpoint['optimizer']) message_output = 'Checkpoint loaded. Resume training from epoch {}'.format(self.start_epoch) self.logger.info(message_output)
def _check_nan(self, loss): if torch.isnan(loss): raise ValueError('Training loss is nan') def _generate_train_loss_output(self, epoch_idx, s_time, e_time, losses): train_loss_output = 'epoch %d training [time: %.2fs, ' % (epoch_idx, e_time - s_time) if isinstance(losses, tuple): train_loss_output = ', '.join('train_loss%d: %.4f' % (idx + 1, loss) for idx, loss in enumerate(losses)) else: train_loss_output += 'train loss: %.4f' % losses return train_loss_output + ']'
[docs] def fit(self, train_data, valid_data=None, verbose=True, saved=True): r"""Train the model based on the train data and the valid data. Args: train_data (DataLoader): the train data valid_data (DataLoader, optional): the valid data, default: None. If it's None, the early_stopping is invalid. verbose (bool, optional): whether to write training and evaluation information to logger, default: True saved (bool, optional): whether to save the model parameters, default: True Returns: (float, dict): best valid score and best valid result. If valid_data is None, it returns (-1, None) """ if saved and self.start_epoch >= self.epochs: self._save_checkpoint(-1) for epoch_idx in range(self.start_epoch, self.epochs): # train training_start_time = time() train_loss = self._train_epoch(train_data, epoch_idx) self.train_loss_dict[epoch_idx] = sum(train_loss) if isinstance(train_loss, tuple) else train_loss training_end_time = time() train_loss_output = \ self._generate_train_loss_output(epoch_idx, training_start_time, training_end_time, train_loss) if verbose: self.logger.info(train_loss_output) # eval if self.eval_step <= 0 or not valid_data: if saved: self._save_checkpoint(epoch_idx) update_output = 'Saving current: %s' % self.saved_model_file if verbose: self.logger.info(update_output) continue if (epoch_idx + 1) % self.eval_step == 0: valid_start_time = time() valid_score, valid_result = self._valid_epoch(valid_data) self.best_valid_score, self.cur_step, stop_flag, update_flag = early_stopping( valid_score, self.best_valid_score, self.cur_step, max_step=self.stopping_step, bigger=self.valid_metric_bigger) valid_end_time = time() valid_score_output = "epoch %d evaluating [time: %.2fs, valid_score: %f]" % \ (epoch_idx, valid_end_time - valid_start_time, valid_score) valid_result_output = 'valid result: \n' + dict2str(valid_result) if verbose: self.logger.info(valid_score_output) self.logger.info(valid_result_output) if update_flag: if saved: self._save_checkpoint(epoch_idx) update_output = 'Saving current best: %s' % self.saved_model_file if verbose: self.logger.info(update_output) self.best_valid_result = valid_result if stop_flag: stop_output = 'Finished training, best eval result in epoch %d' % \ (epoch_idx - self.cur_step * self.eval_step) if verbose: self.logger.info(stop_output) break return self.best_valid_score, self.best_valid_result
def _full_sort_batch_eval(self, batched_data): # Note: interaction without item ids interaction, pos_idx, used_idx, pos_len_list, neg_len_list = batched_data batch_size = interaction.length * self.tot_item_num used_idx = torch.cat([used_idx, torch.arange(interaction.length) * self.tot_item_num]) # remove [pad] item neg_len_list = list(np.subtract(neg_len_list, 1)) try: # Note: interaction without item ids scores = self.model.full_sort_predict(interaction.to(self.device)).flatten() except NotImplementedError: interaction = interaction.to(self.device).repeat_interleave(self.tot_item_num) interaction.update(self.item_tensor[:batch_size]) if batch_size <= self.test_batch_size: scores = self.model.predict(interaction) else: scores = self._spilt_predict(interaction, batch_size) pos_idx = pos_idx.to(self.device) used_idx = used_idx.to(self.device) pos_scores = scores.index_select(dim=0, index=pos_idx) pos_scores = torch.split(pos_scores, pos_len_list, dim=0) ones_tensor = torch.ones(batch_size, dtype=torch.bool, device=self.device) used_mask = ones_tensor.index_fill(dim=0, index=used_idx, value=0) neg_scores = scores.masked_select(used_mask) neg_scores = torch.split(neg_scores, neg_len_list, dim=0) tmp_len_list = np.add(pos_len_list, neg_len_list).tolist() final_scores_width = max(self.tot_item_num, max(tmp_len_list)) extra_len_list = np.subtract(final_scores_width, tmp_len_list).tolist() padding_nums = final_scores_width * len(tmp_len_list) - np.sum(tmp_len_list) padding_tensor = torch.tensor([-np.inf], dtype=scores.dtype, device=self.device).repeat(padding_nums) padding_scores = torch.split(padding_tensor, extra_len_list) final_scores = list(itertools.chain.from_iterable(zip(pos_scores, neg_scores, padding_scores))) final_scores = torch.cat(final_scores) setattr(interaction, 'pos_len_list', pos_len_list) setattr(interaction, 'user_len_list', len(tmp_len_list) * [final_scores_width]) return interaction, final_scores
[docs] @torch.no_grad() def evaluate(self, eval_data, load_best_model=True, model_file=None): r"""Evaluate the model based on the eval data. Args: eval_data (DataLoader): the eval data load_best_model (bool, optional): whether load the best model in the training process, default: True. It should be set True, if users want to test the model after training. model_file (str, optional): the saved model file, default: None. If users want to test the previously trained model file, they can set this parameter. Returns: dict: eval result, key is the eval metric and value in the corresponding metric value """ if not eval_data: return if load_best_model: if model_file: checkpoint_file = model_file else: checkpoint_file = self.saved_model_file checkpoint = torch.load(checkpoint_file) self.model.load_state_dict(checkpoint['state_dict']) message_output = 'Loading model structure and parameters from {}'.format(checkpoint_file) self.logger.info(message_output) self.model.eval() if eval_data.dl_type == DataLoaderType.FULL: if self.item_tensor is None: self.item_tensor = eval_data.get_item_feature().to(self.device).repeat(eval_data.step) self.tot_item_num = eval_data.dataset.item_num batch_matrix_list = [] for batch_idx, batched_data in enumerate(eval_data): if eval_data.dl_type == DataLoaderType.FULL: if self.eval_type == EvaluatorType.INDIVIDUAL: raise ValueError('full sort can\'t use LossEvaluator') interaction, scores = self._full_sort_batch_eval(batched_data) batch_matrix = self.evaluator.collect(interaction, scores, full=True) else: interaction = batched_data batch_size = interaction.length if batch_size <= self.test_batch_size: scores = self.model.predict(interaction.to(self.device)) else: scores = self._spilt_predict(interaction, batch_size) batch_matrix = self.evaluator.collect(interaction, scores) batch_matrix_list.append(batch_matrix) result = self.evaluator.evaluate(batch_matrix_list, eval_data) return result
def _spilt_predict(self, interaction, batch_size): spilt_interaction = dict() for key, tensor in interaction.interaction.items(): spilt_interaction[key] = tensor.split(self.test_batch_size, dim=0) num_block = (batch_size + self.test_batch_size - 1) // self.test_batch_size result_list = [] for i in range(num_block): current_interaction = dict() for key, spilt_tensor in spilt_interaction.items(): current_interaction[key] = spilt_tensor[i] result = self.model.predict(Interaction(current_interaction).to(self.device)) if len(result.shape) == 0: result = result.unsqueeze(0) result_list.append(result) return torch.cat(result_list, dim=0)
[docs] def plot_train_loss(self, show=True, save_path=None): r"""Plot the train loss in each epoch Args: show (bool, optional): whether to show this figure, default: True save_path (str, optional): the data path to save the figure, default: None. If it's None, it will not be saved. """ epochs = list(self.train_loss_dict.keys()) epochs.sort() values = [float(self.train_loss_dict[epoch]) for epoch in epochs] plt.plot(epochs, values) plt.xticks(epochs) plt.xlabel('Epoch') plt.ylabel('Loss') if show: plt.show() if save_path: plt.savefig(save_path)
[docs]class KGTrainer(Trainer): r"""KGTrainer is designed for Knowledge-aware recommendation methods. Some of these models need to train the recommendation related task and knowledge related task alternately. """ def __init__(self, config, model): super(KGTrainer, self).__init__(config, model) self.train_rec_step = config['train_rec_step'] self.train_kg_step = config['train_kg_step'] def _train_epoch(self, train_data, epoch_idx, loss_func=None): if self.train_rec_step is None or self.train_kg_step is None: interaction_state = KGDataLoaderState.RSKG elif epoch_idx % (self.train_rec_step + self.train_kg_step) < self.train_rec_step: interaction_state = KGDataLoaderState.RS else: interaction_state = KGDataLoaderState.KG train_data.set_mode(interaction_state) if interaction_state in [KGDataLoaderState.RSKG, KGDataLoaderState.RS]: return super()._train_epoch(train_data, epoch_idx) elif interaction_state in [KGDataLoaderState.KG]: return super()._train_epoch(train_data, epoch_idx, self.model.calculate_kg_loss) return None
[docs]class KGATTrainer(Trainer): r"""KGATTrainer is designed for KGAT, which is a knowledge-aware recommendation method. """ def __init__(self, config, model): super(KGATTrainer, self).__init__(config, model) def _train_epoch(self, train_data, epoch_idx, loss_func=None): # train rs train_data.set_mode(KGDataLoaderState.RS) rs_total_loss = super()._train_epoch(train_data, epoch_idx) # train kg train_data.set_mode(KGDataLoaderState.KG) kg_total_loss = super()._train_epoch(train_data, epoch_idx, self.model.calculate_kg_loss) # update A self.model.update_attentive_A() return rs_total_loss, kg_total_loss
[docs]class S3RecTrainer(Trainer): r"""S3RecTrainer is designed for S3Rec, which is a self-supervised learning based sequential recommenders. It includes two training stages: pre-training ang fine-tuning. """ def __init__(self, config, model): super(S3RecTrainer, self).__init__(config, model)
[docs] def save_pretrained_model(self, epoch, saved_model_file): r"""Store the model parameters information and training information. Args: epoch (int): the current epoch id saved_model_file (str): file name for saved pretrained model """ state = { 'config': self.config, 'epoch': epoch, 'state_dict': self.model.state_dict(), 'optimizer': self.optimizer.state_dict(), } torch.save(state, saved_model_file)
[docs] def pretrain(self, train_data, verbose=True): for epoch_idx in range(self.start_epoch, self.epochs): # train training_start_time = time() train_loss = self._train_epoch(train_data, epoch_idx) self.train_loss_dict[epoch_idx] = sum(train_loss) if isinstance(train_loss, tuple) else train_loss training_end_time = time() train_loss_output = \ self._generate_train_loss_output(epoch_idx, training_start_time, training_end_time, train_loss) if verbose: self.logger.info(train_loss_output) if (epoch_idx + 1) % self.config['save_step'] == 0: saved_model_file = os.path.join(self.checkpoint_dir, '{}-{}-{}.pth'.format(self.config['model'], self.config['dataset'], str(epoch_idx + 1))) self.save_pretrained_model(epoch_idx, saved_model_file) update_output = 'Saving current: %s' % saved_model_file if verbose: self.logger.info(update_output) return self.best_valid_score, self.best_valid_result
[docs] def fit(self, train_data, valid_data=None, verbose=True, saved=True): if self.model.train_stage == 'pretrain': return self.pretrain(train_data, verbose) elif self.model.train_stage == 'finetune': return super().fit(train_data, valid_data, verbose, saved) else: raise ValueError("Please make sure that the 'train_stage' is 'pretrain' or 'finetune' ")
[docs]class MKRTrainer(Trainer): r"""MKRTrainer is designed for MKR, which is a knowledge-aware recommendation method. """ def __init__(self, config, model): super(MKRTrainer, self).__init__(config, model) self.kge_interval = config['kge_interval'] def _train_epoch(self, train_data, epoch_idx, loss_func=None): rs_total_loss, kg_total_loss = 0., 0. # train rs self.logger.info('Train RS') train_data.set_mode(KGDataLoaderState.RS) rs_total_loss = super()._train_epoch(train_data, epoch_idx, self.model.calculate_rs_loss) # train kg if epoch_idx % self.kge_interval == 0: self.logger.info('Train KG') train_data.set_mode(KGDataLoaderState.KG) kg_total_loss = super()._train_epoch(train_data, epoch_idx, self.model.calculate_kg_loss) return rs_total_loss, kg_total_loss
[docs]class TraditionalTrainer(Trainer): r"""TraditionalTrainer is designed for Traditional model(Pop,ItemKNN), which set the epoch to 1 whatever the config. """ def __init__(self, config, model): super(TraditionalTrainer, self).__init__(config, model) self.epochs = 1 # Set the epoch to 1 when running memory based model