# -*- coding: utf-8 -*-
# @Time : 2020/9/28
# @Author : gaole he
# @Email : hegaole@ruc.edu.cn
r"""
RippleNet
#####################################################
Reference:
Hongwei Wang et al. "RippleNet: Propagating User Preferences on the Knowledge Graph for Recommender Systems."
in CIKM 2018.
"""
import torch
import torch.nn as nn
import numpy as np
import collections
from recbole.utils import InputType
from recbole.model.abstract_recommender import KnowledgeRecommender
from recbole.model.loss import BPRLoss, EmbLoss
from recbole.model.init import xavier_normal_initialization
[docs]class RippleNet(KnowledgeRecommender):
r"""RippleNet is an knowledge enhanced matrix factorization model.
The original interaction matrix of :math:`n_{users} \times n_{items}`
and related knowledge graph is set as model input,
we carefully design the data interface and use ripple set to train and test efficiently.
We just implement the model following the original author with a pointwise training mode.
"""
input_type = InputType.POINTWISE
def __init__(self, config, dataset):
super(RippleNet, self).__init__(config, dataset)
# load dataset info
self.LABEL = config['LABEL_FIELD']
# load parameters info
self.embedding_size = config['embedding_size']
self.kg_weight = config['kg_weight']
self.reg_weight = config['reg_weight']
self.n_hop = config['n_hop']
self.n_memory = config['n_memory']
self.interaction_matrix = dataset.inter_matrix(form='coo').astype(np.float32)
head_entities = dataset.dataset.head_entities.tolist()
tail_entities = dataset.dataset.tail_entities.tolist()
relations = dataset.dataset.relations.tolist()
kg = {}
for i in range(len(head_entities)):
head_ent = head_entities[i]
tail_ent = tail_entities[i]
relation = relations[i]
kg.setdefault(head_ent, [])
kg[head_ent].append((tail_ent, relation))
self.kg = kg
users = self.interaction_matrix.row.tolist()
items = self.interaction_matrix.col.tolist()
user_dict = {}
for i in range(len(users)):
user = users[i]
item = items[i]
user_dict.setdefault(user, [])
user_dict[user].append(item)
self.user_dict = user_dict
self.ripple_set = self._build_ripple_set()
# define layers and loss
self.entity_embedding = nn.Embedding(self.n_entities, self.embedding_size)
self.relation_embedding = nn.Embedding(self.n_relations, self.embedding_size * self.embedding_size)
self.transform_matrix = nn.Linear(self.embedding_size, self.embedding_size, bias=False)
self.softmax = torch.nn.Softmax(dim=1)
self.sigmoid = torch.nn.Sigmoid()
self.rec_loss = BPRLoss()
self.l2_loss = EmbLoss()
self.loss = nn.BCEWithLogitsLoss()
# parameters initialization
self.apply(xavier_normal_initialization)
def _build_ripple_set(self):
r"""Get the normalized interaction matrix of users and items according to A_values.
Get the ripple hop-wise ripple set for every user, w.r.t. their interaction history
Returns:
ripple_set (dict)
"""
ripple_set = collections.defaultdict(list)
n_padding = 0
for user in self.user_dict:
for h in range(self.n_hop):
memories_h = []
memories_r = []
memories_t = []
if h == 0:
tails_of_last_hop = self.user_dict[user]
else:
tails_of_last_hop = ripple_set[user][-1][2]
for entity in tails_of_last_hop:
if entity not in self.kg:
continue
for tail_and_relation in self.kg[entity]:
memories_h.append(entity)
memories_r.append(tail_and_relation[1])
memories_t.append(tail_and_relation[0])
# if the current ripple set of the given user is empty,
# we simply copy the ripple set of the last hop here
if len(memories_h) == 0:
if h == 0:
# print("user {} without 1-hop kg facts, fill with padding".format(user))
# raise AssertionError("User without facts in 1st hop")
n_padding += 1
memories_h = [0 for i in range(self.n_memory)]
memories_r = [0 for i in range(self.n_memory)]
memories_t = [0 for i in range(self.n_memory)]
memories_h = torch.LongTensor(memories_h).to(self.device)
memories_r = torch.LongTensor(memories_r).to(self.device)
memories_t = torch.LongTensor(memories_t).to(self.device)
ripple_set[user].append((memories_h, memories_r, memories_t))
else:
ripple_set[user].append(ripple_set[user][-1])
else:
# sample a fixed-size 1-hop memory for each user
replace = len(memories_h) < self.n_memory
indices = np.random.choice(len(memories_h), size=self.n_memory, replace=replace)
memories_h = [memories_h[i] for i in indices]
memories_r = [memories_r[i] for i in indices]
memories_t = [memories_t[i] for i in indices]
memories_h = torch.LongTensor(memories_h).to(self.device)
memories_r = torch.LongTensor(memories_r).to(self.device)
memories_t = torch.LongTensor(memories_t).to(self.device)
ripple_set[user].append((memories_h, memories_r, memories_t))
print("{} among {} users are padded".format(n_padding, len(self.user_dict)))
return ripple_set
[docs] def forward(self, interaction):
users = interaction[self.USER_ID].cpu().numpy()
memories_h, memories_r, memories_t = {}, {}, {}
for hop in range(self.n_hop):
memories_h[hop] = []
memories_r[hop] = []
memories_t[hop] = []
for user in users:
memories_h[hop].append(self.ripple_set[user][hop][0])
memories_r[hop].append(self.ripple_set[user][hop][1])
memories_t[hop].append(self.ripple_set[user][hop][2])
# memories_h, memories_r, memories_t = self.ripple_set[user]
item = interaction[self.ITEM_ID]
self.item_embeddings = self.entity_embedding(item)
self.h_emb_list = []
self.r_emb_list = []
self.t_emb_list = []
for i in range(self.n_hop):
# [batch size * n_memory]
head_ent = torch.cat(memories_h[i], dim=0)
relation = torch.cat(memories_r[i], dim=0)
tail_ent = torch.cat(memories_t[i], dim=0)
# print("Hop {}, size {}".format(i, head_ent.size(), relation.size(), tail_ent.size()))
# [batch size * n_memory, dim]
self.h_emb_list.append(self.entity_embedding(head_ent))
# [batch size * n_memory, dim * dim]
self.r_emb_list.append(self.relation_embedding(relation))
# [batch size * n_memory, dim]
self.t_emb_list.append(self.entity_embedding(tail_ent))
o_list = self._key_addressing()
y = o_list[-1]
for i in range(self.n_hop - 1):
y = y + o_list[i]
scores = torch.sum(self.item_embeddings * y, dim=1)
return scores
def _key_addressing(self):
r"""Conduct reasoning for specific item and user ripple set
Returns:
o_list (dict -> torch.cuda.FloatTensor): list of torch.cuda.FloatTensor n_hop * [batch_size, embedding_size]
"""
o_list = []
for hop in range(self.n_hop):
# [batch_size * n_memory, dim, 1]
h_emb = self.h_emb_list[hop].unsqueeze(2)
# [batch_size * n_memory, dim, dim]
r_mat = self.r_emb_list[hop].view(-1, self.embedding_size, self.embedding_size)
# [batch_size, n_memory, dim]
Rh = torch.bmm(r_mat, h_emb).view(-1, self.n_memory, self.embedding_size)
# [batch_size, dim, 1]
v = self.item_embeddings.unsqueeze(2)
# [batch_size, n_memory]
probs = torch.bmm(Rh, v).squeeze(2)
# [batch_size, n_memory]
probs_normalized = self.softmax(probs)
# [batch_size, n_memory, 1]
probs_expanded = probs_normalized.unsqueeze(2)
tail_emb = self.t_emb_list[hop].view(-1, self.n_memory, self.embedding_size)
# [batch_size, dim]
o = torch.sum(tail_emb * probs_expanded, dim=1)
self.item_embeddings = self.transform_matrix(self.item_embeddings + o)
# item embedding update
o_list.append(o)
return o_list
[docs] def calculate_loss(self, interaction):
label = interaction[self.LABEL]
output = self.forward(interaction)
rec_loss = self.loss(output, label)
kge_loss = None
for hop in range(self.n_hop):
# (batch_size * n_memory, 1, dim)
h_expanded = self.h_emb_list[hop].unsqueeze(1)
# (batch_size * n_memory, dim)
t_expanded = self.t_emb_list[hop]
# (batch_size * n_memory, dim, dim)
r_mat = self.r_emb_list[hop].view(-1, self.embedding_size, self.embedding_size)
# (N, 1, dim) (N, dim, dim) -> (N, 1, dim)
hR = torch.bmm(h_expanded, r_mat).squeeze(1)
# (N, dim) (N, dim)
hRt = torch.sum(hR * t_expanded, dim=1)
if kge_loss is None:
kge_loss = torch.mean(self.sigmoid(hRt))
else:
kge_loss = kge_loss + torch.mean(self.sigmoid(hRt))
reg_loss = None
for hop in range(self.n_hop):
tp_loss = self.l2_loss(self.h_emb_list[hop], self.t_emb_list[hop], self.r_emb_list[hop])
if reg_loss is None:
reg_loss = tp_loss
else:
reg_loss = reg_loss + tp_loss
reg_loss = reg_loss + self.l2_loss(self.transform_matrix.weight)
loss = rec_loss - self.kg_weight * kge_loss + self.reg_weight * reg_loss
return loss
[docs] def predict(self, interaction):
scores = self.forward(interaction)
return scores
def _key_addressing_full(self):
r"""Conduct reasoning for specific item and user ripple set
Returns:
o_list (dict -> torch.cuda.FloatTensor): list of torch.cuda.FloatTensor n_hop * [batch_size, n_item, embedding_size]
"""
o_list = []
for hop in range(self.n_hop):
# [batch_size * n_memory, dim, 1]
h_emb = self.h_emb_list[hop].unsqueeze(2)
# [batch_size * n_memory, dim, dim]
r_mat = self.r_emb_list[hop].view(-1, self.embedding_size, self.embedding_size)
# [batch_size, n_memory, dim]
Rh = torch.bmm(r_mat, h_emb).view(-1, self.n_memory, self.embedding_size)
batch_size = Rh.size(0)
if len(self.item_embeddings.size()) == 2:
# [1, n_item, dim]
self.item_embeddings = self.item_embeddings.unsqueeze(0)
# [batch_size, n_item, dim]
self.item_embeddings = self.item_embeddings.expand(batch_size, -1, -1)
# [batch_size, dim, n_item]
v = self.item_embeddings.transpose(1, 2)
# [batch_size, dim, n_item]
v = v.expand(batch_size, -1, -1)
else:
assert len(self.item_embeddings.size()) == 3
# [batch_size, dim, n_item]
v = self.item_embeddings.transpose(1, 2)
# [batch_size, n_memory, n_item]
probs = torch.bmm(Rh, v)
# [batch_size, n_memory, n_item]
probs_normalized = self.softmax(probs)
# [batch_size, n_item, n_memory]
probs_transposed = probs_normalized.transpose(1, 2)
# [batch_size, n_memory, dim]
tail_emb = self.t_emb_list[hop].view(-1, self.n_memory, self.embedding_size)
# [batch_size, n_item, dim]
o = torch.bmm(probs_transposed, tail_emb)
# [batch_size, n_item, dim] [batch_size, n_item, dim] -> [batch_size, n_item, dim]
self.item_embeddings = self.transform_matrix(self.item_embeddings + o)
# item embedding update
o_list.append(o)
return o_list
[docs] def full_sort_predict(self, interaction):
users = interaction[self.USER_ID].cpu().numpy()
memories_h, memories_r, memories_t = {}, {}, {}
for hop in range(self.n_hop):
memories_h[hop] = []
memories_r[hop] = []
memories_t[hop] = []
for user in users:
memories_h[hop].append(self.ripple_set[user][hop][0])
memories_r[hop].append(self.ripple_set[user][hop][1])
memories_t[hop].append(self.ripple_set[user][hop][2])
# memories_h, memories_r, memories_t = self.ripple_set[user]
# item = interaction[self.ITEM_ID]
self.item_embeddings = self.entity_embedding.weight[:self.n_items]
# self.item_embeddings = self.entity_embedding(item)
self.h_emb_list = []
self.r_emb_list = []
self.t_emb_list = []
for i in range(self.n_hop):
# [batch size * n_memory]
head_ent = torch.cat(memories_h[i], dim=0)
relation = torch.cat(memories_r[i], dim=0)
tail_ent = torch.cat(memories_t[i], dim=0)
# print("Hop {}, size {}".format(i, head_ent.size(), relation.size(), tail_ent.size()))
# [batch size * n_memory, dim]
self.h_emb_list.append(self.entity_embedding(head_ent))
# [batch size * n_memory, dim * dim]
self.r_emb_list.append(self.relation_embedding(relation))
# [batch size * n_memory, dim]
self.t_emb_list.append(self.entity_embedding(tail_ent))
o_list = self._key_addressing_full()
y = o_list[-1]
for i in range(self.n_hop - 1):
y = y + o_list[i]
# [batch_size, n_item, dim] [batch_size, n_item, dim]
scores = torch.sum(self.item_embeddings * y, dim=-1)
return scores.view(-1)