Source code for recbole.model.context_aware_recommender.widedeep

# -*- coding: utf-8 -*-
# @Time   : 2020/08/30
# @Author : Xinyan Fan
# @Email  : xinyan.fan@ruc.edu.cn
# @File   : widedeep.py

r"""
WideDeep
#####################################################
Reference:
    Heng-Tze Cheng et al. "Wide & Deep Learning for Recommender Systems." in RecSys 2016.
"""

import torch
import torch.nn as nn
from torch.nn.init import xavier_normal_, constant_

from recbole.model.layers import MLPLayers
from recbole.model.abstract_recommender import ContextRecommender


[docs]class WideDeep(ContextRecommender): r"""WideDeep is a context-based recommendation model. It jointly trains wide linear models and deep neural networks to combine the benefits of memorization and generalization for recommender systems. The wide component is a generalized linear model of the form :math:`y = w^Tx + b`. The deep component is a feed-forward neural network. The wide component and deep component are combined using a weighted sum of their output log odds as the prediction, which is then fed to one common logistic loss function for joint training. """ def __init__(self, config, dataset): super(WideDeep, self).__init__(config, dataset) # load parameters info self.mlp_hidden_size = config['mlp_hidden_size'] self.dropout_prob = config['dropout_prob'] # define layers and loss size_list = [self.embedding_size * self.num_feature_field] + self.mlp_hidden_size self.mlp_layers = MLPLayers(size_list, self.dropout_prob) self.deep_predict_layer = nn.Linear(self.mlp_hidden_size[-1], 1) self.sigmoid = nn.Sigmoid() self.loss = nn.BCELoss() # parameters initialization self.apply(self._init_weights) def _init_weights(self, module): if isinstance(module, nn.Embedding): xavier_normal_(module.weight.data) elif isinstance(module, nn.Linear): xavier_normal_(module.weight.data) if module.bias is not None: constant_(module.bias.data, 0)
[docs] def forward(self, interaction): # sparse_embedding shape: [batch_size, num_token_seq_field+num_token_field, embed_dim] or None # dense_embedding shape: [batch_size, num_float_field] or [batch_size, num_float_field, embed_dim] or None sparse_embedding, dense_embedding = self.embed_input_fields(interaction) all_embeddings = [] if sparse_embedding is not None: all_embeddings.append(sparse_embedding) if dense_embedding is not None and len(dense_embedding.shape) == 3: all_embeddings.append(dense_embedding) widedeep_all_embeddings = torch.cat(all_embeddings, dim=1) # [batch_size, num_field, embed_dim] batch_size = widedeep_all_embeddings.shape[0] fm_output = self.first_order_linear(interaction) deep_output = self.deep_predict_layer( self.mlp_layers(widedeep_all_embeddings.view(batch_size, -1))) output = self.sigmoid(fm_output + deep_output) return output.squeeze()
[docs] def calculate_loss(self, interaction): label = interaction[self.LABEL] output = self.forward(interaction) return self.loss(output, label)
[docs] def predict(self, interaction): return self.forward(interaction)