Source code for recbole.model.context_aware_recommender.fwfm

# -*- coding: utf-8 -*-
# @Time   : 2020/10/06
# @Author : Xinyan Fan
# @Email  : xinyan.fan@ruc.edu.cn
# @File   : fwfm.py

r"""
FwFM
#####################################################
Reference:
    Junwei Pan et al. "Field-weighted Factorization Machines for Click-Through Rate Prediction in Display Advertising."
    in WWW 2018.
"""

import torch
import torch.nn as nn
from torch.nn.init import xavier_normal_, constant_

from recbole.model.abstract_recommender import ContextRecommender


[docs]class FwFM(ContextRecommender): r"""FwFM is a context-based recommendation model. It aims to model the different feature interactions between different fields in a much more memory-efficient way. It proposes a field pair weight matrix :math:`r_{F(i),F(j)}`, to capture the heterogeneity of field pair interactions. The model defines as follows: .. math:: y = w_0 + \sum_{i=1}^{m}x_{i}w_{i} + \sum_{i=1}^{m}\sum_{j=i+1}^{m}x_{i}x_{j}<v_{i}, v_{j}>r_{F(i),F(j)} """ def __init__(self, config, dataset): super(FwFM, self).__init__(config, dataset) # load parameters info self.dropout_prob = config['dropout_prob'] self.fields = config['fields'] # a dict; key: field_id; value: feature_list self.num_features = self.num_feature_field self.dropout_layer = nn.Dropout(p=self.dropout_prob) self.sigmoid = nn.Sigmoid() self.feature2id = {} self.feature2field = {} self.feature_names = (self.token_field_names, self.token_seq_field_names, self.float_field_names) self.feature_dims = (self.token_field_dims, self.token_seq_field_dims, self.float_field_dims) self._get_feature2field() self.num_fields = len(set(self.feature2field.values())) # the number of fields self.num_pair = self.num_fields * self.num_fields self.loss = nn.BCELoss() # parameters initialization self.apply(self._init_weights) def _init_weights(self, module): if isinstance(module, nn.Embedding): xavier_normal_(module.weight.data) elif isinstance(module, nn.Linear): xavier_normal_(module.weight.data) if module.bias is not None: constant_(module.bias.data, 0) def _get_feature2field(self): r"""Create a mapping between features and fields. """ fea_id = 0 for names in self.feature_names: if names is not None: print(names) for name in names: self.feature2id[name] = fea_id fea_id += 1 if self.fields is None: field_id = 0 for key, value in self.feature2id.items(): self.feature2field[self.feature2id[key]] = field_id field_id += 1 else: for key, value in self.fields.items(): for v in value: try: self.feature2field[self.feature2id[v]] = key except: pass
[docs] def fwfm_layer(self, infeature): r"""Get the field pair weight matrix r_{F(i),F(j)}, and model the different interaction strengths of different field pairs :math:`\sum_{i=1}^{m}\sum_{j=i+1}^{m}x_{i}x_{j}<v_{i}, v_{j}>r_{F(i),F(j)}`. Args: infeature (torch.cuda.FloatTensor): [batch_size, field_size, embed_dim] Returns: torch.cuda.FloatTensor: [batch_size, 1] """ # get r(Fi, Fj) batch_size = infeature.shape[0] para = torch.randn(self.num_fields*self.num_fields*self.embedding_size).expand(batch_size, self.num_fields*self.num_fields*self.embedding_size).to(self.device) # [batch_size*num_pairs*emb_dim] para = torch.reshape(para, (batch_size, self.num_fields, self.num_fields, self.embedding_size)) r = nn.Parameter(para, requires_grad=True) # [batch_size, num_fields, num_fields, emb_dim] fwfm_inter = list() # [batch_size, num_fields, emb_dim] for i in range(self.num_features - 1): for j in range(i + 1, self.num_features): Fi, Fj = self.feature2field[i], self.feature2field[j] fwfm_inter.append(infeature[:, i] * infeature[:, j] * r[:, Fi, Fj]) fwfm_inter = torch.stack(fwfm_inter, dim=1) fwfm_inter = torch.sum(fwfm_inter, dim=1) # [batch_size, emb_dim] fwfm_inter = self.dropout_layer(fwfm_inter) fwfm_output = torch.sum(fwfm_inter, dim=1, keepdim=True) # [batch_size, 1] return fwfm_output
[docs] def forward(self, interaction): # sparse_embedding shape: [batch_size, num_token_seq_field+num_token_field, embed_dim] or None # dense_embedding shape: [batch_size, num_float_field] or [batch_size, num_float_field, embed_dim] or None sparse_embedding, dense_embedding = self.embed_input_fields(interaction) all_embeddings = [] if sparse_embedding is not None: all_embeddings.append(sparse_embedding) if dense_embedding is not None and len(dense_embedding.shape) == 3: all_embeddings.append(dense_embedding) fwfm_all_embeddings = torch.cat(all_embeddings, dim=1) # [batch_size, num_field, embed_dim] output = self.sigmoid(self.first_order_linear(interaction) + self.fwfm_layer(fwfm_all_embeddings)) return output.squeeze()
[docs] def calculate_loss(self, interaction): label = interaction[self.LABEL] output = self.forward(interaction) return self.loss(output, label)
[docs] def predict(self, interaction): return self.forward(interaction)