STAMP¶
Introduction¶
Title: STAMP: Short-Term Attention/Memory Priority Model for Session-based Recommendation
Authors: Qiao Liu, Yifu Zeng, Refuoe Mokhosi, Haibin Zhang
Abstract: Predicting users’ actions based on anonymous sessions is a hallenging problem in web-based behavioral modeling research, mainly due to the uncertainty of user behavior and the limited information. Recent advances in recurrent neural networks have led to promising approaches to solving this problem, with long short-term memory model proving effective in capturing users’ general interests from previous clicks. However, none of the existing approaches explicitly take the effects of users’ current actions on their next moves into account. In this study, we argue that a long-term memory model may be insufficient for modeling long sessions that usually contain user interests drift caused by unintended clicks. A novel short-term attention/memory priority model is proposed as a remedy, which is capable of capturing users’ general interests from the long-term memory of a session context, whilst taking into account users’ current interests from the short-term memory of the last-clicks. The validity and efficacy of the proposed attention mechanism is extensively evaluated on three benchmark data sets from the RecSys Challenge 2015 and CIKM Cup 2016. The numerical results show that our model achieves state-of-the-art performance in all the tests.
Running with RecBole¶
Model Hyper-Parameters:
embedding_size (int)
: The embedding size of items. Defaults to64
.loss_type (str)
: The type of loss function. If it is set to'CE'
, the training task is regarded as a multi-classification task and the target item is the ground truth. In this way, negative sampling is not needed. If it is set to'BPR'
, the training task will be optimized in the pair-wise way, which maximizes the difference between the positive item and the negative one. In this way, negative sampling is necessary, such as setting--train_neg_sample_args="{'distribution': 'uniform', 'sample_num': 1}"
. Defaults to'CE'
. Range in['BPR', 'CE']
.
A Running Example:
Write the following code to a python file, such as run.py
from recbole.quick_start import run_recbole
parameter_dict = {
'train_neg_sample_args': None,
}
run_recbole(model='STAMP', dataset='ml-100k', config_dict=parameter_dict)
And then:
python run.py
Tuning Hyper Parameters¶
If you want to use HyperTuning
to tune hyper parameters of this model, you can copy the following settings and name it as hyper.test
.
learning_rate choice [0.01,0.005,0.001,0.0005,0.0001]
Note that we just provide these hyper parameter ranges for reference only, and we can not guarantee that they are the optimal range of this model.
Then, with the source code of RecBole (you can download it from GitHub), you can run the run_hyper.py
to tuning:
python run_hyper.py --model=[model_name] --dataset=[dataset_name] --config_files=[config_files_path] --params_file=hyper.test
For more details about Parameter Tuning, refer to Parameter Tuning.
If you want to change parameters, dataset or evaluation settings, take a look at