Case study¶
Case study is an in-depth study of the performance of a specific recommendation algorithm,
which will analysis the recommendation result of some users.
In RecBole, we implemented full_sort_scores()
and full_sort_topk()
for case study purpose.
In this section, we will present a typical usage of these two functions.
Reload model¶
First, we need to reload the recommendation model,
we can use load_data_and_model()
to load saved data and model.
config, model, dataset, train_data, valid_data, test_data = load_data_and_model(
model_file='../saved/BPR-Aug-20-2021_03-32-13.pth',
) # Here you can replace it by your model path.
Convert external user id into internal user id¶
Then, we need to use token2id()
to convert external user id which we want to do case study into internal user id.
uid_series = dataset.token2id(dataset.uid_field, ['196', '186'])
Get scores of every user-item pairs¶
If we want to calculate the scores of every user-item pairs for given user,
we can call full_sort_scores()
function to get the scores matrix.
score = full_sort_scores(uid_series, model, test_data, device=config['device'])
print(score) # score of all items
print(score[0, dataset.token2id(dataset.iid_field, ['242', '302'])])
# score of item ['242', '302'] for user '196'.
The output will be like this:
tensor([[ -inf, -inf, 0.1074, ..., -0.0966, -0.1217, -0.0966],
[ -inf, -0.0013, -inf, ..., -0.1115, -0.1089, -0.1196]],
device='cuda:0')
tensor([ -inf, 0.1074], device='cuda:0')
Note that the score of [pad]
and history items (for non-repeatable recommendation) will be set into -inf
.
Get the top ranked item for each user¶
If we want to get the top ranked item for given user,
we can call full_sort_topk()
function to get the scores and internal ids of these items.
topk_score, topk_iid_list = full_sort_topk(uid_series, model, test_data, k=10, device=config['device'])
print(topk_score) # scores of top 10 items
print(topk_iid_list) # internal id of top 10 items
external_item_list = dataset.id2token(dataset.iid_field, topk_iid_list.cpu())
print(external_item_list) # external tokens of top 10 items
The output will be like this:
tensor([[0.1985, 0.1947, 0.1850, 0.1849, 0.1822, 0.1770, 0.1770, 0.1765, 0.1752,
0.1744],
[0.2487, 0.2379, 0.2351, 0.2311, 0.2293, 0.2239, 0.2215, 0.2156, 0.2137,
0.2114]], device='cuda:0')
tensor([[ 50, 32, 158, 210, 13, 100, 201, 61, 167, 312],
[102, 312, 358, 100, 32, 53, 167, 472, 162, 201]], device='cuda:0')
[['100' '98' '258' '7' '222' '496' '318' '288' '216' '176']
['174' '176' '50' '496' '98' '181' '216' '28' '172' '318']]