Use Modules¶
You can recall different modules in RecBole to satisfy your requirement.
The complete process is as follows:
from logging import getLogger
from recbole.config import Config
from recbole.data import create_dataset, data_preparation
from recbole.model.general_recommender import BPR
from recbole.trainer import Trainer
from recbole.utils import init_seed, init_logger
if __name__ == '__main__':
# configurations initialization
config = Config(model='BPR', dataset='ml-100k')
# init random seed
init_seed(config['seed'], config['reproducibility'])
# logger initialization
init_logger(config)
logger = getLogger()
# write config info into log
logger.info(config)
# dataset creating and filtering
dataset = create_dataset(config)
logger.info(dataset)
# dataset splitting
train_data, valid_data, test_data = data_preparation(config, dataset)
# model loading and initialization
model = BPR(config, train_data.dataset).to(config['device'])
logger.info(model)
# trainer loading and initialization
trainer = Trainer(config, model)
# model training
best_valid_score, best_valid_result = trainer.fit(train_data, valid_data)
# model evaluation
test_result = trainer.evaluate(test_data)
print(test_result)
Configurations Initialization¶
config = Config(model='BPR', dataset='ml-100k')
Config
module is used to set parameters and experiment setup.
Please refer to Config Introduction for more details.
Init Random Seed¶
init_seed(config['seed'], config['reproducibility'])
Initializing the random seed to ensure the reproducibility of the experiments.
Dataset Filtering¶
dataset = create_dataset(config)
Filtering the data files according to the parameters indicated in the configuration.
Dataset Splitting¶
train_data, valid_data, test_data = data_preparation(config, dataset)
Splitting the dataset according to the parameters indicated in the configuration.
Model Initialization¶
model = BPR(config, train_data.dataset).to(config['device'])
Initializing the model according to the model names, and initializing the instance of the model.
Trainer Initialization¶
trainer = Trainer(config, model)
Initializing the trainer, which is used to model training and evaluation.
Automatic Selection of Model and Trainer¶
In the above example, we manually import the model class BPR
and the trainer class Trainer
.
For the implemented model, we support the automatic acquisition of the corresponding model class and
trainer class through the model name.
from recbole.utils import get_model, get_trainer
if __name__ == '__main__':
...
# model loading and initialization
model = get_model(config['model'])(config, train_data).to(config['device'])
# trainer loading and initialization
trainer = get_trainer(config['MODEL_TYPE'], config['model'])(config, model)
...
Model Training¶
best_valid_score, best_valid_result = trainer.fit(train_data, valid_data)
Inputting the training and valid data, and beginning the training process.
Model Evaluation¶
test_result = trainer.evaluate(test_data)
Inputting the test data, and evaluating based on the trained model.
Resume Model From Break Point¶
Our toolkit also supports reloading the parameters from previously trained models.
In this example, we present how to train the model from the former parameters.
...
if __name__ == '__main__':
...
# trainer loading and initialization
trainer = get_trainer(config['MODEL_TYPE'], config['model'])(config, model)
# resume from break point
checkpoint_file = 'checkpoint.pth'
trainer.resume_checkpoint(checkpoint_file)
# model training
best_valid_score, best_valid_result = trainer.fit(train_data, valid_data)
...
checkpoint_file
is the file used to store the model.
In this example, we present how to test a model based on the previous saved parameters.
...
if __name__ == '__main__':
...
# trainer loading and initialization
trainer = get_trainer(config['MODEL_TYPE'], config['model'])(config, model)
# model evaluation
checkpoint_file = 'checkpoint.pth'
test_result = trainer.evaluate(test_data, model_file=checkpoint_file)
print(test_result)
...