Training SettingsΒΆ
Training settings are designed to set parameters about model training.
epochs (int): The number of training epochs. Defaults to300.train_batch_size (int): The training batch size. Defaults to2048.learner (str): The name of used optimizer. Defaults to'adam'. Range in['adam', 'sgd', 'adagrad', 'rmsprop', 'sparse_adam'].learning_rate (float): Learning rate. Defaults to0.001.neg_sampling(dict): This parameter controls the negative sampling for model training. The key range is['uniform', 'popularity'], which decides the distribution of negative items in sampling pools.uniformmeans uniformly select negative items whilepopularitymeans select negative items based on their popularity (Counter(item) in .inter file). The value k (int) of this parameter means sample k negative items for each positive item. Note that if your data is labeled, you need to set this parameter asNone. The default value of this parameter is{'uniform': 1}, which means uniformly sample one negative item for each positive item.eval_step (int): The number of training epochs before an evaluation on the valid dataset. If it is less than 1, the model will not be evaluated on the valid dataset. Defaults to1.stopping_step (int): The threshold for validation-based early stopping. Defaults to10.clip_grad_norm (dict): The args of clip_grad_norm_ which will clip gradient norm of model. Defaults toNone.loss_decimal_place(int): The decimal place of training loss. Defaults to4.weight_decay (float): The weight decay (L2 penalty), used for optimizer. Default to0.0.require_pow(bool): The sign identifies whether the power operation is performed based on the norm in EmbLoss. Defaults toFalse.