recbole.model.abstract_recommender¶
- class recbole.model.abstract_recommender.AbstractRecommender[source]¶
Bases:
torch.nn.modules.module.Module
Base class for all models
- calculate_loss(interaction)[source]¶
Calculate the training loss for a batch data.
- Parameters
interaction (Interaction) – Interaction class of the batch.
- Returns
Training loss, shape: []
- Return type
torch.Tensor
- full_sort_predict(interaction)[source]¶
full sort prediction function. Given users, calculate the scores between users and all candidate items.
- Parameters
interaction (Interaction) – Interaction class of the batch.
- Returns
Predicted scores for given users and all candidate items, shape: [n_batch_users * n_candidate_items]
- Return type
torch.Tensor
- predict(interaction)[source]¶
Predict the scores between users and items.
- Parameters
interaction (Interaction) – Interaction class of the batch.
- Returns
Predicted scores for given users and items, shape: [batch_size]
- Return type
torch.Tensor
- training: bool¶
- class recbole.model.abstract_recommender.ContextRecommender(config, dataset)[source]¶
Bases:
recbole.model.abstract_recommender.AbstractRecommender
This is a abstract context-aware recommender. All the context-aware model should implement this class. The base context-aware recommender class provide the basic embedding function of feature fields which also contains a first-order part of feature fields.
- double_tower_embed_input_fields(interaction)[source]¶
Embed the whole feature columns in a double tower way.
- Parameters
interaction (Interaction) – The input data collection.
- Returns
The embedding tensor of token sequence columns in the first part. torch.FloatTensor: The embedding tensor of float sequence columns in the first part. torch.FloatTensor: The embedding tensor of token sequence columns in the second part. torch.FloatTensor: The embedding tensor of float sequence columns in the second part.
- Return type
torch.FloatTensor
- embed_float_fields(float_fields, embed=True)[source]¶
Embed the float feature columns
- Parameters
float_fields (torch.FloatTensor) – The input dense tensor. shape of [batch_size, num_float_field]
embed (bool) – Return the embedding of columns or just the columns itself. Defaults to
True
.
- Returns
The result embedding tensor of float columns.
- Return type
torch.FloatTensor
- embed_input_fields(interaction)[source]¶
Embed the whole feature columns.
- Parameters
interaction (Interaction) – The input data collection.
- Returns
The embedding tensor of token sequence columns. torch.FloatTensor: The embedding tensor of float sequence columns.
- Return type
torch.FloatTensor
- embed_token_fields(token_fields)[source]¶
Embed the token feature columns
- Parameters
token_fields (torch.LongTensor) – The input tensor. shape of [batch_size, num_token_field]
- Returns
The result embedding tensor of token columns.
- Return type
torch.FloatTensor
- embed_token_seq_fields(token_seq_fields, mode='mean')[source]¶
Embed the token feature columns
- Parameters
token_seq_fields (torch.LongTensor) – The input tensor. shape of [batch_size, seq_len]
mode (str) – How to aggregate the embedding of feature in this field. default=mean
- Returns
The result embedding tensor of token sequence columns.
- Return type
torch.FloatTensor
- input_type = 1¶
- training: bool¶
- type = 3¶
- class recbole.model.abstract_recommender.GeneralRecommender(config, dataset)[source]¶
Bases:
recbole.model.abstract_recommender.AbstractRecommender
This is a abstract general recommender. All the general model should implement this class. The base general recommender class provide the basic dataset and parameters information.
- training: bool¶
- type = 1¶
- class recbole.model.abstract_recommender.KnowledgeRecommender(config, dataset)[source]¶
Bases:
recbole.model.abstract_recommender.AbstractRecommender
This is a abstract knowledge-based recommender. All the knowledge-based model should implement this class. The base knowledge-based recommender class provide the basic dataset and parameters information.
- training: bool¶
- type = 4¶
- class recbole.model.abstract_recommender.SequentialRecommender(config, dataset)[source]¶
Bases:
recbole.model.abstract_recommender.AbstractRecommender
This is a abstract sequential recommender. All the sequential model should implement This class.
- gather_indexes(output, gather_index)[source]¶
Gathers the vectors at the specific positions over a minibatch
- training: bool¶
- type = 2¶