.. RecBole documentation master file.
.. title:: RecBole v1.0.0
.. image:: asset/logo.png
=========================================================
`HomePage `_ | `Docs `_ | `GitHub `_ | `Datasets `_ | `v0.1.2 `_ | `v0.2.0 `_
Introduction
-------------------------
RecBole is a unified, comprehensive and efficient framework developed based on PyTorch.
It aims to help the researchers to reproduce and develop recommendation models.
In the lastest release, our library includes 73 recommendation algorithms `[Model List]`_, covering four major categories:
- General Recommendation
- Sequential Recommendation
- Context-aware Recommendation
- Knowledge-based Recommendation
We design a unified and flexible data file format, and provide the support for 28 benchmark recommendation datasets `[Collected Datasets]`_. A user can apply the provided script to process the original data copy, or simply download the processed datasets by our team.
.. image:: asset/framework.png
:width: 600
:align: center
Features:
- General and extensible data structure
We deign general and extensible data structures to unify the formatting and usage of various recommendation datasets.
- Comprehensive benchmark models and datasets
We implement 73 commonly used recommendation algorithms, and provide the formatted copies of 28 recommendation datasets.
- Efficient GPU-accelerated execution
We design many tailored strategies in the GPU environment to enhance the efficiency of our library.
- Extensive and standard evaluation protocols
We support a series of commonly used evaluation protocols or settings for testing and comparing recommendation algorithms.
.. _[Collected Datasets]:
/dataset_list.html
.. _[Model List]:
/model_list.html
.. toctree::
:maxdepth: 1
:caption: Get Started
get_started/install
get_started/quick_start
.. toctree::
:maxdepth: 1
:caption: User Guide
user_guide/config_settings
user_guide/data_intro
user_guide/model_intro
user_guide/train_eval_intro
user_guide/usage
.. toctree::
:maxdepth: 1
:caption: Developer Guide
developer_guide/customize_models
developer_guide/customize_trainers
developer_guide/customize_dataloaders
developer_guide/customize_samplers
developer_guide/customize_metrics
.. toctree::
:maxdepth: 1
:caption: API REFERENCE:
recbole/recbole.config.configurator
recbole/recbole.data
recbole/recbole.evaluator
recbole/recbole.model
recbole/recbole.quick_start.quick_start
recbole/recbole.sampler.sampler
recbole/recbole.trainer.hyper_tuning
recbole/recbole.trainer.trainer
recbole/recbole.utils.case_study
recbole/recbole.utils.enum_type
recbole/recbole.utils.logger
recbole/recbole.utils.utils
The Team
------------------
RecBole is developed and maintained by `RUC, BUPT, ECNU `_.
Here is the list of our lead developers in each development phase. They are the souls of RecBole and have made outstanding contributions.
====================== =============== =============================================
Time Version Lead Developers
====================== =============== =============================================
June 2020 ~ Nov. 2020 v0.1.1 `Shanlei Mu `_, `Yupeng Hou `_, `Zihan Lin `_, `Kaiyuan Li `_
Nov. 2020 ~ Now v0.1.2 ~ v1.0.0 `Yushuo Chen `_, `Xingyu Pan `_
====================== =============== =============================================
License
------------
RecBole uses `MIT License `_.