Source code for recbole.model.sequential_recommender.gru4rec

# -*- coding: utf-8 -*-
# @Time   : 2020/8/17 19:38
# @Author : Yujie Lu
# @Email  : yujielu1998@gmail.com

# UPDATE:
# @Time   : 2020/8/19, 2020/10/2
# @Author : Yupeng Hou, Yujie Lu
# @Email  : houyupeng@ruc.edu.cn, yujielu1998@gmail.com

r"""
GRU4Rec
################################################

Reference:
    Yong Kiam Tan et al. "Improved Recurrent Neural Networks for Session-based Recommendations." in DLRS 2016.

"""

import torch
from torch import nn
from torch.nn.init import xavier_uniform_, xavier_normal_

from recbole.model.abstract_recommender import SequentialRecommender
from recbole.model.loss import BPRLoss


[docs]class GRU4Rec(SequentialRecommender): r"""GRU4Rec is a model that incorporate RNN for recommendation. Note: Regarding the innovation of this article,we can only achieve the data augmentation mentioned in the paper and directly output the embedding of the item, in order that the generation method we used is common to other sequential models. """ def __init__(self, config, dataset): super(GRU4Rec, self).__init__(config, dataset) # load parameters info self.embedding_size = config['embedding_size'] self.hidden_size = config['hidden_size'] self.loss_type = config['loss_type'] self.num_layers = config['num_layers'] self.dropout_prob = config['dropout_prob'] # define layers and loss self.item_embedding = nn.Embedding(self.n_items, self.embedding_size, padding_idx=0) self.emb_dropout = nn.Dropout(self.dropout_prob) self.gru_layers = nn.GRU( input_size=self.embedding_size, hidden_size=self.hidden_size, num_layers=self.num_layers, bias=False, batch_first=True, ) self.dense = nn.Linear(self.hidden_size, self.embedding_size) if self.loss_type == 'BPR': self.loss_fct = BPRLoss() elif self.loss_type == 'CE': self.loss_fct = nn.CrossEntropyLoss() else: raise NotImplementedError("Make sure 'loss_type' in ['BPR', 'CE']!") # parameters initialization self.apply(self._init_weights) def _init_weights(self, module): if isinstance(module, nn.Embedding): xavier_normal_(module.weight) elif isinstance(module, nn.GRU): xavier_uniform_(module.weight_hh_l0) xavier_uniform_(module.weight_ih_l0)
[docs] def forward(self, item_seq, item_seq_len): item_seq_emb = self.item_embedding(item_seq) item_seq_emb_dropout = self.emb_dropout(item_seq_emb) gru_output, _ = self.gru_layers(item_seq_emb_dropout) gru_output = self.dense(gru_output) # the embedding of the predicted item, shape of (batch_size, embedding_size) seq_output = self.gather_indexes(gru_output, item_seq_len - 1) return seq_output
[docs] def calculate_loss(self, interaction): item_seq = interaction[self.ITEM_SEQ] item_seq_len = interaction[self.ITEM_SEQ_LEN] seq_output = self.forward(item_seq, item_seq_len) pos_items = interaction[self.POS_ITEM_ID] if self.loss_type == 'BPR': neg_items = interaction[self.NEG_ITEM_ID] pos_items_emb = self.item_embedding(pos_items) neg_items_emb = self.item_embedding(neg_items) pos_score = torch.sum(seq_output * pos_items_emb, dim=-1) # [B] neg_score = torch.sum(seq_output * neg_items_emb, dim=-1) # [B] loss = self.loss_fct(pos_score, neg_score) return loss else: # self.loss_type = 'CE' test_item_emb = self.item_embedding.weight logits = torch.matmul(seq_output, test_item_emb.transpose(0, 1)) loss = self.loss_fct(logits, pos_items) return loss
[docs] def predict(self, interaction): item_seq = interaction[self.ITEM_SEQ] item_seq_len = interaction[self.ITEM_SEQ_LEN] test_item = interaction[self.ITEM_ID] seq_output = self.forward(item_seq, item_seq_len) test_item_emb = self.item_embedding(test_item) scores = torch.mul(seq_output, test_item_emb).sum(dim=1) # [B] return scores
[docs] def full_sort_predict(self, interaction): item_seq = interaction[self.ITEM_SEQ] item_seq_len = interaction[self.ITEM_SEQ_LEN] seq_output = self.forward(item_seq, item_seq_len) test_items_emb = self.item_embedding.weight scores = torch.matmul(seq_output, test_items_emb.transpose(0, 1)) # [B, n_items] return scores