# -*- coding: utf-8 -*-
# @Time : 2020/11/21 20:00
# @Author : Shao Weiqi
# @Reviewer : Lin Kun
# @Email : shaoweiqi@ruc.edu.cn
r"""
FOSSIL
################################################
Reference:
Ruining He et al. "Fusing Similarity Models with Markov Chains for Sparse Sequential Recommendation." in ICDM 2016.
"""
import torch
import torch.nn as nn
from torch.nn.init import xavier_normal_
from recbole.model.abstract_recommender import SequentialRecommender
from recbole.model.loss import BPRLoss
[docs]class FOSSIL(SequentialRecommender):
r"""
FOSSIL uses similarity of the items as main purpose and uses high MC as a way of sequential preference improve of
ability of sequential recommendation
"""
def __init__(self, config, dataset):
super(FOSSIL, self).__init__(config, dataset)
# load the dataset information
self.n_users = dataset.num(self.USER_ID)
self.device = config['device']
# load the parameters
self.embedding_size = config["embedding_size"]
self.order_len = config["order_len"]
assert self.order_len <= self.max_seq_length, "order_len can't longer than the max_seq_length"
self.reg_weight = config["reg_weight"]
self.alpha = config["alpha"]
# define the layers and loss type
self.item_embedding = nn.Embedding(self.n_items, self.embedding_size, padding_idx=0)
self.user_lambda = nn.Embedding(self.n_users, self.order_len)
self.lambda_ = nn.Parameter(torch.zeros(self.order_len)).to(self.device)
self.loss_type = config['loss_type']
if self.loss_type == 'BPR':
self.loss_fct = BPRLoss()
elif self.loss_type == 'CE':
self.loss_fct = nn.CrossEntropyLoss()
else:
raise NotImplementedError("Make sure 'loss_type' in ['BPR', 'CE']!")
# init the parameters of the model
self.apply(self.init_weights)
[docs] def inverse_seq_item_embedding(self, seq_item_embedding, seq_item_len):
"""
inverse seq_item_embedding like this (simple to 2-dim):
[1,2,3,0,0,0] -- ??? -- >> [0,0,0,1,2,3]
first: [0,0,0,0,0,0] concat [1,2,3,0,0,0]
using gather_indexes: to get one by one
first get 3,then 2,last 1
"""
zeros = torch.zeros_like(seq_item_embedding, dtype=torch.float).to(self.device)
# batch_size * seq_len * embedding_size
item_embedding_zeros = torch.cat([zeros, seq_item_embedding], dim=1)
# batch_size * 2_mul_seq_len * embedding_size
embedding_list = list()
for i in range(self.order_len):
embedding = self.gather_indexes(
item_embedding_zeros, self.max_seq_length + seq_item_len - self.order_len + i
)
embedding_list.append(embedding.unsqueeze(1))
short_item_embedding = torch.cat(embedding_list, dim=1)
# batch_size * short_len * embedding_size
return short_item_embedding
[docs] def reg_loss(self, user_embedding, item_embedding, seq_output):
reg_1 = self.reg_weight
loss_1 = reg_1 * torch.norm(user_embedding, p=2) \
+ reg_1 * torch.norm(item_embedding, p=2) \
+ reg_1 * torch.norm(seq_output, p=2)
return loss_1
[docs] def init_weights(self, module):
if isinstance(module, nn.Embedding) or isinstance(module, nn.Linear):
xavier_normal_(module.weight.data)
[docs] def forward(self, seq_item, seq_item_len, user):
seq_item_embedding = self.item_embedding(seq_item)
high_order_seq_item_embedding = self.inverse_seq_item_embedding(seq_item_embedding, seq_item_len)
# batch_size * order_len * embedding
high_order = self.get_high_order_Markov(high_order_seq_item_embedding, user)
similarity = self.get_similarity(seq_item_embedding, seq_item_len)
return high_order + similarity
[docs] def get_high_order_Markov(self, high_order_item_embedding, user):
"""
in order to get the inference of past items and the user's taste to the current predict item
"""
user_lambda = self.user_lambda(user).unsqueeze(dim=2)
# batch_size * order_len * 1
lambda_ = self.lambda_.unsqueeze(dim=0).unsqueeze(dim=2)
# 1 * order_len * 1
lambda_ = torch.add(user_lambda, lambda_)
# batch_size * order_len * 1
high_order_item_embedding = torch.mul(high_order_item_embedding, lambda_)
# batch_size * order_len * embedding_size
high_order_item_embedding = high_order_item_embedding.sum(dim=1)
# batch_size * embedding_size
return high_order_item_embedding
[docs] def get_similarity(self, seq_item_embedding, seq_item_len):
"""
in order to get the inference of past items to the current predict item
"""
coeff = torch.pow(seq_item_len.unsqueeze(1), -self.alpha).float()
# batch_size * 1
similarity = torch.mul(coeff, seq_item_embedding.sum(dim=1))
# batch_size * embedding_size
return similarity
[docs] def calculate_loss(self, interaction):
seq_item = interaction[self.ITEM_SEQ]
user = interaction[self.USER_ID]
seq_item_len = interaction[self.ITEM_SEQ_LEN]
seq_output = self.forward(seq_item, seq_item_len, user)
pos_items = interaction[self.POS_ITEM_ID]
pos_items_emb = self.item_embedding(pos_items)
user_lambda = self.user_lambda(user)
pos_items_embedding = self.item_embedding(pos_items)
if self.loss_type == 'BPR':
neg_items = interaction[self.NEG_ITEM_ID]
neg_items_emb = self.item_embedding(neg_items)
pos_score = torch.sum(seq_output * pos_items_emb, dim=-1)
neg_score = torch.sum(seq_output * neg_items_emb, dim=-1)
loss = self.loss_fct(pos_score, neg_score)
return loss + self.reg_loss(user_lambda, pos_items_embedding, seq_output)
else: # self.loss_type = 'CE'
test_item_emb = self.item_embedding.weight
logits = torch.matmul(seq_output, test_item_emb.transpose(0, 1))
loss = self.loss_fct(logits, pos_items)
return loss + self.reg_loss(user_lambda, pos_items_embedding, seq_output)
[docs] def predict(self, interaction):
item_seq = interaction[self.ITEM_SEQ]
item_seq_len = interaction[self.ITEM_SEQ_LEN]
test_item = interaction[self.ITEM_ID]
user = interaction[self.USER_ID]
seq_output = self.forward(item_seq, item_seq_len, user)
test_item_emb = self.item_embedding(test_item)
scores = torch.mul(seq_output, test_item_emb).sum(dim=1)
return scores
[docs] def full_sort_predict(self, interaction):
item_seq = interaction[self.ITEM_SEQ]
user = interaction[self.USER_ID]
item_seq_len = interaction[self.ITEM_SEQ_LEN]
seq_output = self.forward(item_seq, item_seq_len, user)
test_items_emb = self.item_embedding.weight
scores = torch.matmul(seq_output, test_items_emb.transpose(0, 1))
return scores