# -*- coding: utf-8 -*-
# @Time : 2020/9/18 11:27
# @Author : Hui Wang
# @Email : hui.wang@ruc.edu.cn
r"""
FDSA
################################################
Reference:
Tingting Zhang et al. "Feature-level Deeper Self-Attention Network for Sequential Recommendation."
In IJCAI 2019
"""
import torch
from torch import nn
from recbole.model.abstract_recommender import SequentialRecommender
from recbole.model.layers import TransformerEncoder, FeatureSeqEmbLayer, VanillaAttention
from recbole.model.loss import BPRLoss
[docs]class FDSA(SequentialRecommender):
r"""
FDSA is similar with the GRU4RecF implemented in RecBole, which uses two different Transformer encoders to
encode items and features respectively and concatenates the two subparts' outputs as the final output.
"""
def __init__(self, config, dataset):
super(FDSA, self).__init__(config, dataset)
# load parameters info
self.n_layers = config['n_layers']
self.n_heads = config['n_heads']
self.hidden_size = config['hidden_size'] # same as embedding_size
self.inner_size = config['inner_size'] # the dimensionality in feed-forward layer
self.hidden_dropout_prob = config['hidden_dropout_prob']
self.attn_dropout_prob = config['attn_dropout_prob']
self.hidden_act = config['hidden_act']
self.layer_norm_eps = config['layer_norm_eps']
self.selected_features = config['selected_features']
self.pooling_mode = config['pooling_mode']
self.device = config['device']
self.num_feature_field = len(config['selected_features'])
self.initializer_range = config['initializer_range']
self.loss_type = config['loss_type']
# define layers and loss
self.item_embedding = nn.Embedding(self.n_items, self.hidden_size, padding_idx=0)
self.position_embedding = nn.Embedding(self.max_seq_length, self.hidden_size)
self.feature_embed_layer = FeatureSeqEmbLayer(
dataset, self.hidden_size, self.selected_features, self.pooling_mode, self.device
)
self.item_trm_encoder = TransformerEncoder(
n_layers=self.n_layers,
n_heads=self.n_heads,
hidden_size=self.hidden_size,
inner_size=self.inner_size,
hidden_dropout_prob=self.hidden_dropout_prob,
attn_dropout_prob=self.attn_dropout_prob,
hidden_act=self.hidden_act,
layer_norm_eps=self.layer_norm_eps
)
self.feature_att_layer = VanillaAttention(self.hidden_size, self.hidden_size)
# For simplicity, we use same architecture for item_trm and feature_trm
self.feature_trm_encoder = TransformerEncoder(
n_layers=self.n_layers,
n_heads=self.n_heads,
hidden_size=self.hidden_size,
inner_size=self.inner_size,
hidden_dropout_prob=self.hidden_dropout_prob,
attn_dropout_prob=self.attn_dropout_prob,
hidden_act=self.hidden_act,
layer_norm_eps=self.layer_norm_eps
)
self.LayerNorm = nn.LayerNorm(self.hidden_size, eps=self.layer_norm_eps)
self.dropout = nn.Dropout(self.hidden_dropout_prob)
self.concat_layer = nn.Linear(self.hidden_size * 2, self.hidden_size)
if self.loss_type == 'BPR':
self.loss_fct = BPRLoss()
elif self.loss_type == 'CE':
self.loss_fct = nn.CrossEntropyLoss()
else:
raise NotImplementedError("Make sure 'loss_type' in ['BPR', 'CE']!")
# parameters initialization
self.apply(self._init_weights)
self.other_parameter_name = ['feature_embed_layer']
def _init_weights(self, module):
""" Initialize the weights """
if isinstance(module, (nn.Linear, nn.Embedding)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.initializer_range)
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
if isinstance(module, nn.Linear) and module.bias is not None:
module.bias.data.zero_()
[docs] def get_attention_mask(self, item_seq):
"""Generate left-to-right uni-directional attention mask for multi-head attention."""
attention_mask = (item_seq > 0).long()
extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2) # torch.int64
# mask for left-to-right unidirectional
max_len = attention_mask.size(-1)
attn_shape = (1, max_len, max_len)
subsequent_mask = torch.triu(torch.ones(attn_shape), diagonal=1) # torch.uint8
subsequent_mask = (subsequent_mask == 0).unsqueeze(1)
subsequent_mask = subsequent_mask.long().to(item_seq.device)
extended_attention_mask = extended_attention_mask * subsequent_mask
extended_attention_mask = extended_attention_mask.to(dtype=next(self.parameters()).dtype) # fp16 compatibility
extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
return extended_attention_mask
[docs] def forward(self, item_seq, item_seq_len):
item_emb = self.item_embedding(item_seq)
position_ids = torch.arange(item_seq.size(1), dtype=torch.long, device=item_seq.device)
position_ids = position_ids.unsqueeze(0).expand_as(item_seq)
position_embedding = self.position_embedding(position_ids)
# get item_trm_input
# item position add position embedding
item_emb = item_emb + position_embedding
item_emb = self.LayerNorm(item_emb)
item_trm_input = self.dropout(item_emb)
sparse_embedding, dense_embedding = self.feature_embed_layer(None, item_seq)
sparse_embedding = sparse_embedding['item']
dense_embedding = dense_embedding['item']
# concat the sparse embedding and float embedding
feature_table = []
if sparse_embedding is not None:
feature_table.append(sparse_embedding)
if dense_embedding is not None:
feature_table.append(dense_embedding)
# [batch len num_features hidden_size]
feature_table = torch.cat(feature_table, dim=-2)
# feature_emb [batch len hidden]
# weight [batch len num_features]
# if only one feature, the weight would be 1.0
feature_emb, attn_weight = self.feature_att_layer(feature_table)
# feature position add position embedding
feature_emb = feature_emb + position_embedding
feature_emb = self.LayerNorm(feature_emb)
feature_trm_input = self.dropout(feature_emb)
extended_attention_mask = self.get_attention_mask(item_seq)
item_trm_output = self.item_trm_encoder(item_trm_input, extended_attention_mask, output_all_encoded_layers=True)
item_output = item_trm_output[-1]
feature_trm_output = self.feature_trm_encoder(
feature_trm_input, extended_attention_mask, output_all_encoded_layers=True
) # [B Len H]
feature_output = feature_trm_output[-1]
item_output = self.gather_indexes(item_output, item_seq_len - 1) # [B H]
feature_output = self.gather_indexes(feature_output, item_seq_len - 1) # [B H]
output_concat = torch.cat((item_output, feature_output), -1) # [B 2*H]
output = self.concat_layer(output_concat)
output = self.LayerNorm(output)
seq_output = self.dropout(output)
return seq_output # [B H]
[docs] def calculate_loss(self, interaction):
item_seq = interaction[self.ITEM_SEQ]
item_seq_len = interaction[self.ITEM_SEQ_LEN]
seq_output = self.forward(item_seq, item_seq_len)
pos_items = interaction[self.POS_ITEM_ID]
if self.loss_type == 'BPR':
neg_items = interaction[self.NEG_ITEM_ID]
pos_items_emb = self.item_embedding(pos_items)
neg_items_emb = self.item_embedding(neg_items)
pos_score = torch.sum(seq_output * pos_items_emb, dim=-1) # [B]
neg_score = torch.sum(seq_output * neg_items_emb, dim=-1) # [B]
loss = self.loss_fct(pos_score, neg_score)
return loss
else: # self.loss_type = 'CE'
test_item_emb = self.item_embedding.weight
logits = torch.matmul(seq_output, test_item_emb.transpose(0, 1))
loss = self.loss_fct(logits, pos_items)
return loss
[docs] def predict(self, interaction):
item_seq = interaction[self.ITEM_SEQ]
item_seq_len = interaction[self.ITEM_SEQ_LEN]
test_item = interaction[self.ITEM_ID]
seq_output = self.forward(item_seq, item_seq_len)
test_item_emb = self.item_embedding(test_item)
scores = torch.mul(seq_output, test_item_emb).sum(dim=1) # [B]
return scores
[docs] def full_sort_predict(self, interaction):
item_seq = interaction[self.ITEM_SEQ]
item_seq_len = interaction[self.ITEM_SEQ_LEN]
seq_output = self.forward(item_seq, item_seq_len)
test_items_emb = self.item_embedding.weight
scores = torch.matmul(seq_output, test_items_emb.transpose(0, 1)) # [B, n_items]
return scores