# -*- coding: utf-8 -*-
# @Time : 2020/08/30
# @Author : Xinyan Fan
# @Email : xinyan.fan@ruc.edu.cn
# @File : widedeep.py
r"""
WideDeep
#####################################################
Reference:
Heng-Tze Cheng et al. "Wide & Deep Learning for Recommender Systems." in RecSys 2016.
"""
import torch.nn as nn
from torch.nn.init import xavier_normal_, constant_
from recbole.model.abstract_recommender import ContextRecommender
from recbole.model.layers import MLPLayers
[docs]class WideDeep(ContextRecommender):
r"""WideDeep is a context-based recommendation model.
It jointly trains wide linear models and deep neural networks to combine the benefits
of memorization and generalization for recommender systems. The wide component is a generalized linear model
of the form :math:`y = w^Tx + b`. The deep component is a feed-forward neural network. The wide component
and deep component are combined using a weighted sum of their output log odds as the prediction,
which is then fed to one common logistic loss function for joint training.
"""
def __init__(self, config, dataset):
super(WideDeep, self).__init__(config, dataset)
# load parameters info
self.mlp_hidden_size = config['mlp_hidden_size']
self.dropout_prob = config['dropout_prob']
# define layers and loss
size_list = [self.embedding_size * self.num_feature_field] + self.mlp_hidden_size
self.mlp_layers = MLPLayers(size_list, self.dropout_prob)
self.deep_predict_layer = nn.Linear(self.mlp_hidden_size[-1], 1)
self.sigmoid = nn.Sigmoid()
self.loss = nn.BCELoss()
# parameters initialization
self.apply(self._init_weights)
def _init_weights(self, module):
if isinstance(module, nn.Embedding):
xavier_normal_(module.weight.data)
elif isinstance(module, nn.Linear):
xavier_normal_(module.weight.data)
if module.bias is not None:
constant_(module.bias.data, 0)
[docs] def forward(self, interaction):
widedeep_all_embeddings = self.concat_embed_input_fields(interaction) # [batch_size, num_field, embed_dim]
batch_size = widedeep_all_embeddings.shape[0]
fm_output = self.first_order_linear(interaction)
deep_output = self.deep_predict_layer(self.mlp_layers(widedeep_all_embeddings.view(batch_size, -1)))
output = self.sigmoid(fm_output + deep_output)
return output.squeeze(-1)
[docs] def calculate_loss(self, interaction):
label = interaction[self.LABEL]
output = self.forward(interaction)
return self.loss(output, label)
[docs] def predict(self, interaction):
return self.forward(interaction)