DiffRec¶
- Reference:
Wenjie Wang et al. “Diffusion Recommender Model.” in SIGIR 2023.
- Reference code:
- class recbole.model.general_recommender.diffrec.DNN(dims: List, emb_size: int, time_type='cat', act_func='tanh', norm=False, dropout=0.5)[source]¶
Bases:
torch.nn.modules.module.Module
A deep neural network for the reverse diffusion preocess.
- forward(x, timesteps)[source]¶
Defines the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.
- training: bool¶
- class recbole.model.general_recommender.diffrec.DiffRec(config, dataset)[source]¶
Bases:
recbole.model.abstract_recommender.GeneralRecommender
,recbole.model.abstract_recommender.AutoEncoderMixin
DiffRec is a generative recommender model which infers users’ interaction probabilities in a denoising manner. Note that DiffRec simultaneously ranks all items for each user. We implement the the DiffRec model with only user dataloader.
- build_histroy_items(dataset)[source]¶
Add time-aware reweighting to the original user-item interaction matrix when config[‘time-aware’] is True.
- calculate_loss(interaction)[source]¶
Calculate the training loss for a batch data.
- Parameters
interaction (Interaction) – Interaction class of the batch.
- Returns
Training loss, shape: []
- Return type
torch.Tensor
- full_sort_predict(interaction)[source]¶
full sort prediction function. Given users, calculate the scores between users and all candidate items.
- Parameters
interaction (Interaction) – Interaction class of the batch.
- Returns
Predicted scores for given users and all candidate items, shape: [n_batch_users * n_candidate_items]
- Return type
torch.Tensor
- input_type = 3¶
- p_mean_variance(x, t)[source]¶
Apply the model to get p(x_{t-1} | x_t), as well as a prediction of the initial x, x_0.
- p_sample(x_start)[source]¶
Generate users’ interaction probabilities in a denoising manner. :param x_start: the input tensor that contains user’s history interaction matrix,
for DiffRec shape: [batch_size, n_items] for LDiffRec shape: [batch_size, hidden_size]
- Returns
- the interaction probabilities,
for DiffRec shape: [batch_size, n_items] for LDiffRec shape: [batch_size, hidden_size]
- Return type
torch.FloatTensor
- predict(interaction)[source]¶
Predict the scores between users and items.
- Parameters
interaction (Interaction) – Interaction class of the batch.
- Returns
Predicted scores for given users and items, shape: [batch_size]
- Return type
torch.Tensor
- q_posterior_mean_variance(x_start, x_t, t)[source]¶
- Compute the mean and variance of the diffusion posterior:
q(x_{t-1} | x_t, x_0)
- training: bool¶
- class recbole.model.general_recommender.diffrec.ModelMeanType(value)[source]¶
Bases:
enum.Enum
An enumeration.
- EPSILON = 2¶
- START_X = 1¶
- recbole.model.general_recommender.diffrec.betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999)[source]¶
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of (1-beta) over time from t = [0,1].
- Parameters
num_diffusion_timesteps (int) – the number of betas to produce.
alpha_bar (Callable) – a lambda that takes an argument t from 0 to 1 and produces the cumulative product of (1-beta) up to that part of the diffusion process.
max_beta (int) – the maximum beta to use; use values lower than 1 to prevent singularities.
- Returns
a 1-D array of beta values.
- Return type
np.ndarray
- recbole.model.general_recommender.diffrec.betas_from_linear_variance(steps, variance, max_beta=0.999)[source]¶
- recbole.model.general_recommender.diffrec.mean_flat(tensor)[source]¶
Take the mean over all non-batch dimensions.
- recbole.model.general_recommender.diffrec.normal_kl(mean1, logvar1, mean2, logvar2)[source]¶
Compute the KL divergence between two gaussians.
Shapes are automatically broadcasted, so batches can be compared to scalars, among other use cases.
- recbole.model.general_recommender.diffrec.timestep_embedding(timesteps, dim, max_period=10000)[source]¶
Create sinusoidal timestep embeddings.
- Parameters
timesteps – a 1-D Tensor of N indices, one per batch element. These may be fractional. (N,)
dim – the dimension of the output.
max_period – controls the minimum frequency of the embeddings.
- Returns
an [N x dim] Tensor of positional embeddings.