DIN =========== Introduction --------------------- `[paper] `_ **Title:** Deep Interest Network for Click-Through Rate Prediction **Authors:** Guorui Zhou, Chengru Song, Xiaoqiang Zhu, Ying Fan, Han Zhu, Xiao Ma, Yanghui Yan, Junqi Jin, Han Li, Kun Gai **Abstract:** Click-through rate prediction is an essential task in industrial applications, such as online advertising. Recently deep learning based models have been proposed, which follow a similar Embedding&MLP paradigm. In these methods large scale sparse input features are first mapped into low dimensional embedding vectors, and then transformed into fixed-length vectors in a group-wise manner, finally concatenated together to fed into a multilayer perceptron (MLP) to learn the nonlinear relations among features. In this way, user features are compressed into a fixed-length representation vector, in regardless of what candidate ads are. The use of fixed-length vector will be a bottleneck, which brings difficulty for Embedding&MLP methods to capture user’s diverse interests effectively from rich historical behaviors. In this paper, we propose a novel model: Deep Interest Network (DIN) which tackles this challenge by designing a local activation unit to adaptively learn the representation of user interests from historical behaviors with respect to a certain ad. This representation vector varies over different ads, improving the expressive ability of model greatly. Besides, we develop two techniques: mini-batch aware regularization and data adaptive activation function which can help training industrial deep networks with hundreds of millions of parameters. Experiments on two public datasets as well as an Alibaba real production dataset with over 2 billion samples demonstrate the effectiveness of proposed approaches, which achieve superior performance compared with state-of-the-art methods. DIN now has been successfully deployed in the online display advertising system in Alibaba, serving the main traffic. .. image:: ../../../asset/din.png :width: 1000 :align: center Quick Start with RecBole ------------------------- **Model Hyper-Parameters:** - ``embedding_size (int)`` : The embedding size of features. Defaults to ``10``. - ``mlp_hidden_size (list of int)`` : The hidden size of MLP layers. Defaults to ``[256,256,256]``. - ``dropout_prob (float)`` : The dropout rate. Defaults to ``0.0``. - ``pooling_mode (str)`` : Pooling mode of sequence data. Defaults to ``'mean'``. Range in ``['max', 'mean', 'sum']``. **A Running Example:** Write the following code to a python file, such as `run.py` .. code:: python from recbole.quick_start import run_recbole run_recbole(model='DIN', dataset='ml-100k') And then: .. code:: bash python run.py Tuning Hyper Parameters ------------------------- If you want to use ``HyperTuning`` to tune hyper parameters of this model, you can copy the following settings and name it as ``hyper.test``. .. code:: bash learning_rate choice [0.01,0.005,0.001,0.0005,0.0001] dropout_prob choice [0.0,0.1,0.2,0.3,0.4,0.5] mlp_hidden_size choice ['[64,64,64]','[128,128,128]','[256,256,256]','[512,512,512]'] pooling_mode choice ['mean','max','sum'] Note that we just provide these hyper parameter ranges for reference only, and we can not guarantee that they are the optimal range of this model. Then, with the source code of RecBole (you can download it from GitHub), you can run the ``run_hyper.py`` to tuning: .. code:: bash python run_hyper.py --model=[model_name] --dataset=[dataset_name] --config_files=[config_files_path] --params_file=hyper.test For more details about Parameter Tuning, refer to :doc:`../../../user_guide/usage/parameter_tuning`. If you want to change parameters, dataset or evaluation settings, take a look at - :doc:`../../../user_guide/config_settings` - :doc:`../../../user_guide/data_intro` - :doc:`../../../user_guide/train_eval_intro` - :doc:`../../../user_guide/usage`