Quick Start: Context-aware Recommendation ============================================ For context-aware recommendation, we choose **LR** model to show you how to train and test it on the **ml-100k** dataset from both **API** and **source code**. Quick-start From API --------------------- 1. Prepare your data: >>>>>>>>>>>>>>>>>>>>>>>>>>>>>> Before running a model, firstly you need to prepare and load data. To help users quickly get start, RecBole has a build-in dataset **ml-100k** and you can directly use it. However, if you want to use other datasets, you can read `Running New Dataset `__ for more information. Then, you need to set data config for data loading. You can create a yaml file called test.yaml and write the following settings: .. code:: yaml # dataset config : Context-aware Recommendation load_col: inter: ['user_id', 'item_id', 'rating', 'timestamp'] user: ['user_id', 'age', 'gender', 'occupation'] item: ['item_id', 'release_year', 'class'] threshold: {'rating': 4} normalize_all: True Generally, context-aware recommendation models utilize the features of users, items and interactions to make CTR predictions, so it needs to load the used features. And context-aware recommendation models are mainly used in explicit feedback scenes, so your data should have explicit feedback information and you need to set label for them. Here we set ``rating=4`` as threshold to label the interaction. For more information about label setting, please read the `Label of data `__. 2. Choose a model: >>>>>>>>>>>>>>>>>>>>>>>>>>>>>> You can choose a model from our `Model Introduction `__. Here we choose LR model to demonstrate how to train and test the context-aware recommendation model. Then, you need to set the parameter for LR model. You can check the `LR `__ and add the model settings into the test.yaml, like: .. code:: yaml # model config embedding_size: 10 If you want to run different models, you can read `Running Different Models `__ for more information. 3. Set training and evaluation config: >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> In RecBole, we support multiple training and evaluation methods. You can choose how to train and test model by simply setting the config. Here we want to train and test the LR model in training-validation-test method (optimize model parameters on the training set, do parameter selection according to the results on the validation set, and finally report the results on the test set) and evaluate the model performance by full ranking with all item candidates, so we can add the following settings into the test.yaml. .. code:: yaml # Training and evaluation config epochs: 500 train_batch_size: 4096 eval_batch_size: 4096 eval_args: split: {'RS':[0.8,0.1,0.1]} order: RO group_by: ~ mode: labeled train_neg_sample_args: ~ metrics: ['AUC', 'LogLoss'] valid_metric: AUC Note that RecBole also supports to evaluate the context-aware recommendation models by full-ranking like general recommendation models, but you need to make sure that your ``.inter`` file can not load any other context information column. For more details of training and evaluation config, please refer to `Training Settings `__ and `Evaluation Settings `__. .. _header-n19: 4. Run the model and collect the result >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> Now you have finished all the preparations, it’s time to run the model! You can create a new python file (e.g., run.py), and write the following code: .. code:: python from recbole.quick_start import run_recbole run_recbole(model='LR', dataset='ml-100k', config_file_list=['test.yaml']) Then run the following command: .. code:: python python run.py And you will obtain the output like: .. code:: 16 Jul 20:12 INFO ml-100k The number of users: 944 Average actions of users: 106.04453870625663 The number of items: 1683 Average actions of items: 59.45303210463734 The number of inters: 100000 The sparsity of the dataset: 93.70575143257098% Remain Fields: ['user_id', 'item_id', 'timestamp', 'age', 'gender', 'occupation', 'release_year', 'class', 'label'] 16 Jul 20:12 INFO [Training]: train_batch_size = [4096] negative sampling: [None] 16 Jul 20:12 INFO [Evaluation]: eval_batch_size = [4096] eval_args: [{'split': {'RS': [0.8, 0.1, 0.1]}, 'order': 'RO', 'group_by': None, 'mode': 'labeled'}] 16 Jul 20:12 INFO LR( (token_embedding_table): FMEmbedding( (embedding): Embedding(2788, 10) ) (float_embedding_table): Embedding(1, 10) (token_seq_embedding_table): ModuleList( (0): Embedding(20, 10) ) (first_order_linear): FMFirstOrderLinear( (token_embedding_table): FMEmbedding( (embedding): Embedding(2788, 1) ) (float_embedding_table): Embedding(1, 1) (token_seq_embedding_table): ModuleList( (0): Embedding(20, 1) ) ) (sigmoid): Sigmoid() (loss): BCELoss() ) Trainable parameters: 30900 Train 0: 100%|█████████████████████████████████████████████████| 20/20 [00:00<00:00, 165.41it/s] 16 Jul 20:12 INFO epoch 0 training [time: 0.12s, train loss: 14.3632] Evaluate : 100%|███████████████████████████████████████████████████| 3/3 [00:00<00:00, 373.46it/s] 16 Jul 20:12 INFO epoch 0 evaluating [time: 0.01s, valid_score: 0.476300] 16 Jul 20:12 INFO valid result: auc : 0.4763 logloss : 0.7162 16 Jul 20:12 INFO Saving current: saved\LR-Jul-16-2022_20-12-38.pth Train 1: 100%|█████████████████████████████████████████████████| 20/20 [00:00<00:00, 165.49it/s] 16 Jul 20:12 INFO epoch 1 training [time: 0.12s, train loss: 14.1432] Evaluate : 100%|███████████████████████████████████████████████████| 3/3 [00:00<00:00, 372.51it/s] 16 Jul 20:12 INFO epoch 1 evaluating [time: 0.01s, valid_score: 0.497500] ...... Train 253: 100%|█████████████████████████████████████████████████| 20/20 [00:00<00:00, 165.77it/s] 16 Jul 20:13 INFO epoch 253 training [time: 0.12s, train loss: 10.7201] Evaluate : 100%|███████████████████████████████████████████████████| 3/3 [00:00<00:00, 374.20it/s] 16 Jul 20:13 INFO epoch 253 evaluating [time: 0.01s, valid_score: 0.774400] 16 Jul 20:13 INFO valid result: auc : 0.7744 logloss : 0.5654 16 Jul 20:13 INFO Finished training, best eval result in epoch 242 16 Jul 20:13 INFO Loading model structure and parameters from saved\LR-Jul-16-2022_20-12-38.pth Evaluate : 100%|███████████████████████████████████████████████████| 3/3 [00:00<00:00, 298.71it/s] 16 Jul 20:13 INFO best valid : OrderedDict([('auc', 0.7745), ('logloss', 0.5651)]) 16 Jul 20:13 INFO test result: OrderedDict([('auc', 0.7765), ('logloss', 0.562)]) Finally you will get the model’s performance on the test set and the model file will be saved under the /saved. Besides, RecBole allows tracking and visualizing train loss and valid score with TensorBoard, please read the `Use Tensorboard `__ for more details. The above is the whole process of running a model in RecBole, and you can read other docs for depth usage. .. _header-n29: Quick-start From Source ------------------------- Besides using API, you can also directly run the source code of `RecBole `__. The whole process is similar to Quick-start From API. You can create a yaml file called test.yaml and set all the config as follow: .. code:: yaml # dataset config : Context-aware Recommendation load_col: inter: ['user_id', 'item_id', 'rating', 'timestamp'] user: ['user_id', 'age', 'gender', 'occupation'] item: ['item_id', 'release_year', 'class'] threshold: {'rating': 4} # model config embedding_size: 10 # Training and evaluation config epochs: 500 train_batch_size: 4096 eval_batch_size: 4096 eval_args: split: {'RS':[0.8,0.1,0.1]} order: RO group_by: ~ mode: labeled train_neg_sample_args: ~ metrics: ['AUC', 'LogLoss'] valid_metric: AUC Then run the following command: .. code:: python python run_recbole.py --model=LR --dataset=ml-100k --config_files=test.yaml And you will get the output of running the LR model on the ml-100k dataset. If you want to change the parameters, such as ``embedding_size``, just set the additional command parameters as you need: .. code:: python python run_recbole.py --model=LR --dataset=ml-100k --config_files=test.yaml --embedding_size=100