Distributed Training ======================= Now we support distributed training and evaluation. Here is a distributed training example for using RecBole. We will show you how to train and test **BPR** model on the **ml-100k** dataset in the distributed environment. Prepare your environment -------------------------- Before distributed training, firstly you need to prepare your computing environment. Here we first introduce some basic concepts to describe the environment. - ``rank`` : It is used to represent the number / sequence number of processes (in some structural diagrams, rank refers to soft nodes, and rank can be regarded as a computing unit). Each process corresponds to a rank process, and the whole distribution is completed by many ranks. - ``node`` : The physical node can be a machine or a container, and there can be multiple GPUs inside the node. - ``local rank`` : It refers to the relative sequence number of the process on a node and is independent between nodes. - ``world size`` : The number of ranks in the global (the whole distributed task). Suppose you have two devices and each device has four GPUs to train your model, the environment is shown as following: .. image:: ../asset/ddp.png :width: 600 :align: center Quick-start From API -------------------------- 1. Prepare your data >>>>>>>>>>>>>>>>>>>>>>>>>>>>>> Note in distributed training, the config and dataset of each process should be the same. It is recommended that you create a configuration file shared by different processes. In above example, you can create a `yaml` file called `test.yaml` and write the following settings: .. code:: yaml gpu_id: '0,1,2,3' # dataset config USER_ID_FIELD: user_id ITEM_ID_FIELD: item_id load_col: inter: [user_id, item_id] For more details of data config, please refer to :doc:`../user_guide/config/data_settings`. 2. Choose a model: >>>>>>>>>>>>>>>>>>>>>>>>> In RecBole, we implement more than 100 recommendation models covering general recommendation, sequential recommendation, context-aware recommendation and knowledge-based recommendation. You can choose a model from our :doc:`../user_guide/model_intro`. Here we choose BPR model to train and test. Then, you need to set the parameter for BPR model. You can check the :doc:`../user_guide/model/general/bpr` and add the model settings into the `test.yaml`, like: .. code:: yaml # model config embedding_size: 64 If you want to run different models, you can read :doc:`../user_guide/usage/running_different_models` for more information. 3. Set training and evaluation config: >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> In RecBole, we support multiple training and evaluation methods. You can choose how to train and test model by simply setting the config. Here we want to train and test the BPR model in training-validation-test method (optimize model parameters on the training set, do parameter selection according to the results on the validation set, and finally report the results on the test set) and evaluate the model performance by full ranking with all item candidates, so we can add the following settings into the `test.yaml`. .. code:: yaml # Training and evaluation config epochs: 500 train_batch_size: 4096 eval_batch_size: 4096 train_neg_sample_args: distribution: uniform sample_num: 1 alpha: 1.0 dynamic: False candidate_num: 0 eval_args: group_by: user order: RO split: {'RS': [0.8,0.1,0.1]} mode: full metrics: ['Recall', 'MRR', 'NDCG', 'Hit', 'Precision'] topk: 10 valid_metric: MRR@10 metric_decimal_place: 4 For more details of training and evaluation config, please refer to :doc:`../user_guide/config/training_settings` and :doc:`../user_guide/config/evaluation_settings`. 4. Run the model and collect the result >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> Now you have finished all the preparations, it's time to run the model! In distributed training, you should specify the following parameters on each node: - ``ip`` : IP address of the master node (i.e. node of the process with rank of 0). - ``port`` : The port number of the master node. - ``world_size`` : The number of ranks in the global (the whole distributed task). - ``nproc`` : The number of processes on current node. - ``group_offset`` : The offset of the global rank of current node (i.e. the lowest global rank of current node). In above example, you can create a new python file (e.g., `run_a.py`) on node A, and write the following code: .. code:: python from recbole.quick_start import run_recboles import torch.multiprocessing as mp args = dict( model = 'BPR', dataset = 'ml-100k', config_file_list = ['test.yaml'], ip = '123.456.789.21', port = '5678', world_size = 8, nproc = 4, group_offset = 0 ) # Optional, only needed if you want to get the result of each process. queue = mp.get_context('spawn').SimpleQueue() config_dict = config_dict or {} config_dict.update({ "world_size": args.world_size, "ip": args.ip, "port": args.port, "nproc": args.nproc, "offset": args.group_offset, }) kwargs = { "config_dict": config_dict, "queue": queue, # Optional } mp.spawn( run_recboles, args=(args.model, args.dataset, args.config_file_list, kwargs), nprocs=nproc, join=True, ) # Normally, there should be only one item in the queue res = None if queue.empty() else queue.get() Then run the following command: .. code:: bash python run_a.py Similarly, you can create a new python file (e.g., `run_b.py`) on node B, and write the following code: .. code:: python from recbole.quick_start import run_recboles import torch.multiprocessing as mp args = dict( model = 'BPR', dataset = 'ml-100k', config_file_list = ['test.yaml'], ip = '123.456.789.22', port = '5678', world_size = 8, nproc = 4, group_offset = 4 ) # Optional, only needed if you want to get the result of each process. queue = mp.get_context('spawn').SimpleQueue() config_dict = config_dict or {} config_dict.update({ "world_size": args.world_size, "ip": args.ip, "port": args.port, "nproc": args.nproc, "offset": args.group_offset, }) kwargs = { "config_dict": config_dict, "queue": queue, # Optional } mp.spawn( run_recboles, args=(args.model, args.dataset, args.config_file_list, kwargs), nprocs=nproc, join=True, ) # Normally, there should be only one item in the queue res = None if queue.empty() else queue.get() Then run the following command: .. code:: bash python run_b.py And you will obtain the output like: .. code:: none 23 Jul 15:25 INFO ml-100k The number of users: 944 Average actions of users: 106.04453870625663 The number of items: 1683 Average actions of items: 59.45303210463734 The number of inters: 100000 The sparsity of the dataset: 93.70575143257098% Remain Fields: ['user_id', 'item_id', 'rating', 'timestamp'] 23 Jul 15:25 INFO [Training]: train_batch_size = [4096] negative sampling: [{'uniform': 1}] 23 Jul 15:25 INFO [Evaluation]: eval_batch_size = [4096] eval_args: [{'group_by': 'user', 'order': 'RO', 'split': {'RS': [0.8, 0.1, 0.1]}, 'mode': 'full'}] 23 Jul 15:25 INFO BPR( (user_embedding): Embedding(944, 64) (item_embedding): Embedding(1683, 64) (loss): BPRLoss() ) Trainable parameters: 168128 Train 0: 100%|████████████████████████| 20/20 [00:00<00:00, 171.07it/s, GPU RAM: 0.01 G/11.91 G] 23 Jul 15:25 INFO epoch 0 training [time: 0.15s, train loss: 13.8632] Evaluate : 100%|██████████████████████| 236/236 [00:00<00:00, 805.94it/s, GPU RAM: 0.01 G/11.91 G] 23 Jul 15:25 INFO epoch 0 evaluating [time: 0.30s, valid_score: 0.023300] 23 Jul 15:25 INFO valid result: recall@10 : 0.0069 mrr@10 : 0.0233 ndcg@10 : 0.0098 hit@10 : 0.0763 precision@10 : 0.0082 23 Jul 15:25 INFO Saving current: saved/BPR-Jul-23-2022_15-25-07.pth Train 1: 100%|████████████████████████| 20/20 [00:00<00:00, 211.76it/s, GPU RAM: 0.01 G/11.91 G] 23 Jul 15:25 INFO epoch 1 training [time: 0.10s, train loss: 13.8347] Evaluate : 100%|██████████████████████| 236/236 [00:00<00:00, 790.24it/s, GPU RAM: 0.01 G/11.91 G] 23 Jul 15:25 INFO epoch 1 evaluating [time: 0.30s, valid_score: 0.026900] 23 Jul 15:25 INFO valid result: recall@10 : 0.0088 mrr@10 : 0.0269 ndcg@10 : 0.0115 hit@10 : 0.0943 precision@10 : 0.01 23 Jul 15:25 INFO Saving current: saved/BPR-Jul-23-2022_15-25-07.pth ...... Train 72: 100%|████████████████████████| 20/20 [00:00<00:00, 195.92it/s, GPU RAM: 0.01 G/11.91 G] 23 Jul 15:25 INFO epoch 72 training [time: 0.10s, train loss: 2.9418] Evaluate : 100%|██████████████████████| 236/236 [00:00<00:00, 816.90it/s, GPU RAM: 0.01 G/11.91 G] 23 Jul 15:25 INFO epoch 72 evaluating [time: 0.29s, valid_score: 0.378600] 23 Jul 15:25 INFO valid result: recall@10 : 0.2097 mrr@10 : 0.3786 ndcg@10 : 0.227 hit@10 : 0.7299 precision@10 : 0.1569 23 Jul 15:25 INFO Finished training, best eval result in epoch 61 23 Jul 15:25 INFO Loading model structure and parameters from saved/BPR-Jul-23-2022_15-25-07.pth Evaluate : 100%|██████████████████████| 236/236 [00:00<00:00, 818.49it/s, GPU RAM: 0.01 G/11.91 G] 23 Jul 15:25 INFO best valid : {'recall@10': 0.2, 'mrr@10': 0.383, 'ndcg@10': 0.2239, 'hit@10': 0.7182, 'precision@10': 0.1536} 23 Jul 15:25 INFO test result: {'recall@10': 0.2416, 'mrr@10': 0.4709, 'ndcg@10': 0.2863, 'hit@10': 0.7701, 'precision@10': 0.1937} Finally you will get the model's performance on the test set and the model file will be saved under the `/saved`. Besides, RecBole allows tracking and visualizing train loss and valid score with TensorBoard, please read the :doc:`../user_guide/usage/use_tensorboard` for more details. The above is the whole process of running a model in RecBole, and you can read other docs for depth usage. Quick-start From Source -------------------------- Besides using API, you can also directly run the source code of `RecBole `_. The whole process is similar to Quick-start From API. You can create a `yaml` file called `test.yaml` and set all the config as following: .. code:: yaml # dataset config USER_ID_FIELD: user_id ITEM_ID_FIELD: item_id load_col: inter: [user_id, item_id] # model config embedding_size: 64 # Training and evaluation config epochs: 500 train_batch_size: 4096 eval_batch_size: 4096 train_neg_sample_args: distribution: uniform sample_num: 1 alpha: 1.0 dynamic: False candidate_num: 0 eval_args: group_by: user order: RO split: {'RS': [0.8,0.1,0.1]} mode: full metrics: ['Recall', 'MRR', 'NDCG', 'Hit', 'Precision'] topk: 10 valid_metric: MRR@10 metric_decimal_place: 4 1. Single node multi gpus >>>>>>>>>>>>>>>>>>>>>>>>>>>>>> If you train your model on one node with multi gpus, you only need to specify the number of processes on the command line. In above example, you should run the following command: .. code:: bash python run_recbole.py --model=BPR --dataset=ml-100k --config_files=test.yaml --nproc=4 And you will get the output of running the BPR model on the ml-100k dataset. 2. Multi nodes multi gpus >>>>>>>>>>>>>>>>>>>>>>>>>>>>>> If you train your model on multi nodes with multi gpus, you need to specify the same parameters as Quick-start From API. In above example, you should run the following command on node A: .. code:: bash python run_recbole.py --model=BPR --dataset=ml-100k --config_files=test.yaml --ip='183.174.228.81' --port='5678' --nproc=4 --world_size=8 --group_offset=0 And run the following command on node B: .. code:: bash python run_recbole.py --model=BPR --dataset=ml-100k --config_files=test.yaml --ip='183.174.228.81' --port='5678' --nproc=4 --world_size=8 --group_offset=4 In-depth Usage ------------------- For a more in-depth usage about RecBole, take a look at - :doc:`../user_guide/config_settings` - :doc:`../user_guide/data_intro` - :doc:`../user_guide/model_intro` - :doc:`../user_guide/train_eval_intro` - :doc:`../user_guide/usage`