# -*- coding: utf-8 -*-
# @Time : 2020/8/31
# @Author : Changxin Tian
# @Email : cx.tian@outlook.com
# UPDATE:
# @Time : 2020/9/16, 2021/12/22
# @Author : Shanlei Mu, Gaowei Zhang
# @Email : slmu@ruc.edu.cn, 1462034631@qq.com
r"""
LightGCN
################################################
Reference:
Xiangnan He et al. "LightGCN: Simplifying and Powering Graph Convolution Network for Recommendation." in SIGIR 2020.
Reference code:
https://github.com/kuandeng/LightGCN
"""
import numpy as np
import scipy.sparse as sp
import torch
from recbole.model.abstract_recommender import GeneralRecommender
from recbole.model.init import xavier_uniform_initialization
from recbole.model.loss import BPRLoss, EmbLoss
from recbole.utils import InputType
[docs]class LightGCN(GeneralRecommender):
r"""LightGCN is a GCN-based recommender model.
LightGCN includes only the most essential component in GCN — neighborhood aggregation — for
collaborative filtering. Specifically, LightGCN learns user and item embeddings by linearly
propagating them on the user-item interaction graph, and uses the weighted sum of the embeddings
learned at all layers as the final embedding.
We implement the model following the original author with a pairwise training mode.
"""
input_type = InputType.PAIRWISE
def __init__(self, config, dataset):
super(LightGCN, self).__init__(config, dataset)
# load dataset info
self.interaction_matrix = dataset.inter_matrix(form="coo").astype(np.float32)
# load parameters info
self.latent_dim = config[
"embedding_size"
] # int type:the embedding size of lightGCN
self.n_layers = config["n_layers"] # int type:the layer num of lightGCN
self.reg_weight = config[
"reg_weight"
] # float32 type: the weight decay for l2 normalization
self.require_pow = config["require_pow"]
# define layers and loss
self.user_embedding = torch.nn.Embedding(
num_embeddings=self.n_users, embedding_dim=self.latent_dim
)
self.item_embedding = torch.nn.Embedding(
num_embeddings=self.n_items, embedding_dim=self.latent_dim
)
self.mf_loss = BPRLoss()
self.reg_loss = EmbLoss()
# storage variables for full sort evaluation acceleration
self.restore_user_e = None
self.restore_item_e = None
# generate intermediate data
self.norm_adj_matrix = self.get_norm_adj_mat().to(self.device)
# parameters initialization
self.apply(xavier_uniform_initialization)
self.other_parameter_name = ["restore_user_e", "restore_item_e"]
[docs] def get_norm_adj_mat(self):
r"""Get the normalized interaction matrix of users and items.
Construct the square matrix from the training data and normalize it
using the laplace matrix.
.. math::
A_{hat} = D^{-0.5} \times A \times D^{-0.5}
Returns:
Sparse tensor of the normalized interaction matrix.
"""
# build adj matrix
A = sp.dok_matrix(
(self.n_users + self.n_items, self.n_users + self.n_items), dtype=np.float32
)
inter_M = self.interaction_matrix
inter_M_t = self.interaction_matrix.transpose()
data_dict = dict(
zip(zip(inter_M.row, inter_M.col + self.n_users), [1] * inter_M.nnz)
)
data_dict.update(
dict(
zip(
zip(inter_M_t.row + self.n_users, inter_M_t.col),
[1] * inter_M_t.nnz,
)
)
)
A._update(data_dict)
# norm adj matrix
sumArr = (A > 0).sum(axis=1)
# add epsilon to avoid divide by zero Warning
diag = np.array(sumArr.flatten())[0] + 1e-7
diag = np.power(diag, -0.5)
D = sp.diags(diag)
L = D * A * D
# covert norm_adj matrix to tensor
L = sp.coo_matrix(L)
row = L.row
col = L.col
i = torch.LongTensor(np.array([row, col]))
data = torch.FloatTensor(L.data)
SparseL = torch.sparse.FloatTensor(i, data, torch.Size(L.shape))
return SparseL
[docs] def get_ego_embeddings(self):
r"""Get the embedding of users and items and combine to an embedding matrix.
Returns:
Tensor of the embedding matrix. Shape of [n_items+n_users, embedding_dim]
"""
user_embeddings = self.user_embedding.weight
item_embeddings = self.item_embedding.weight
ego_embeddings = torch.cat([user_embeddings, item_embeddings], dim=0)
return ego_embeddings
[docs] def forward(self):
all_embeddings = self.get_ego_embeddings()
embeddings_list = [all_embeddings]
for layer_idx in range(self.n_layers):
all_embeddings = torch.sparse.mm(self.norm_adj_matrix, all_embeddings)
embeddings_list.append(all_embeddings)
lightgcn_all_embeddings = torch.stack(embeddings_list, dim=1)
lightgcn_all_embeddings = torch.mean(lightgcn_all_embeddings, dim=1)
user_all_embeddings, item_all_embeddings = torch.split(
lightgcn_all_embeddings, [self.n_users, self.n_items]
)
return user_all_embeddings, item_all_embeddings
[docs] def calculate_loss(self, interaction):
# clear the storage variable when training
if self.restore_user_e is not None or self.restore_item_e is not None:
self.restore_user_e, self.restore_item_e = None, None
user = interaction[self.USER_ID]
pos_item = interaction[self.ITEM_ID]
neg_item = interaction[self.NEG_ITEM_ID]
user_all_embeddings, item_all_embeddings = self.forward()
u_embeddings = user_all_embeddings[user]
pos_embeddings = item_all_embeddings[pos_item]
neg_embeddings = item_all_embeddings[neg_item]
# calculate BPR Loss
pos_scores = torch.mul(u_embeddings, pos_embeddings).sum(dim=1)
neg_scores = torch.mul(u_embeddings, neg_embeddings).sum(dim=1)
mf_loss = self.mf_loss(pos_scores, neg_scores)
# calculate regularization Loss
u_ego_embeddings = self.user_embedding(user)
pos_ego_embeddings = self.item_embedding(pos_item)
neg_ego_embeddings = self.item_embedding(neg_item)
reg_loss = self.reg_loss(
u_ego_embeddings,
pos_ego_embeddings,
neg_ego_embeddings,
require_pow=self.require_pow,
)
loss = mf_loss + self.reg_weight * reg_loss
return loss
[docs] def predict(self, interaction):
user = interaction[self.USER_ID]
item = interaction[self.ITEM_ID]
user_all_embeddings, item_all_embeddings = self.forward()
u_embeddings = user_all_embeddings[user]
i_embeddings = item_all_embeddings[item]
scores = torch.mul(u_embeddings, i_embeddings).sum(dim=1)
return scores
[docs] def full_sort_predict(self, interaction):
user = interaction[self.USER_ID]
if self.restore_user_e is None or self.restore_item_e is None:
self.restore_user_e, self.restore_item_e = self.forward()
# get user embedding from storage variable
u_embeddings = self.restore_user_e[user]
# dot with all item embedding to accelerate
scores = torch.matmul(u_embeddings, self.restore_item_e.transpose(0, 1))
return scores.view(-1)