Source code for recbole.model.context_aware_recommender.lr

# -*- coding: utf-8 -*-
# @Time   : 2020/08/30
# @Author : Xinyan Fan
# @Email  : xinyan.fan@ruc.edu.cn
# @File   : lr.py

r"""
LR
#####################################################
Reference:
    Matthew Richardson et al. "Predicting Clicks Estimating the Click-Through Rate for New Ads." in WWW 2007.
"""

import torch.nn as nn
from torch.nn.init import xavier_normal_

from recbole.model.abstract_recommender import ContextRecommender


[docs]class LR(ContextRecommender): r"""LR is a context-based recommendation model. It aims to predict the CTR given a set of features by using logistic regression, which is ideally suited for probabilities as it always predicts a value between 0 and 1: .. math:: CTR = \frac{1}{1+e^{-Z}} Z = \sum_{i} {w_i}{x_i} """ def __init__(self, config, dataset): super(LR, self).__init__(config, dataset) self.sigmoid = nn.Sigmoid() self.loss = nn.BCEWithLogitsLoss() # parameters initialization self.apply(self._init_weights) def _init_weights(self, module): if isinstance(module, nn.Embedding): xavier_normal_(module.weight.data)
[docs] def forward(self, interaction): output = self.first_order_linear(interaction) return output.squeeze(-1)
[docs] def calculate_loss(self, interaction): label = interaction[self.LABEL] output = self.forward(interaction) return self.loss(output, label)
[docs] def predict(self, interaction): return self.sigmoid(self.forward(interaction))