Source code for recbole.model.context_aware_recommender.deepfm

# -*- coding: utf-8 -*-
# @Time   : 2020/7/8
# @Author : Shanlei Mu
# @Email  : slmu@ruc.edu.cn
# @File   : deepfm.py

# UPDATE:
# @Time   : 2020/8/14
# @Author : Zihan Lin
# @Email  : linzihan.super@foxmain.com

r"""
DeepFM
################################################
Reference:
    Huifeng Guo et al. "DeepFM: A Factorization-Machine based Neural Network for CTR Prediction." in IJCAI 2017.
"""

import torch.nn as nn
from torch.nn.init import xavier_normal_, constant_

from recbole.model.abstract_recommender import ContextRecommender
from recbole.model.layers import BaseFactorizationMachine, MLPLayers


[docs]class DeepFM(ContextRecommender): """DeepFM is a DNN enhanced FM which both use a DNN and a FM to calculate feature interaction. Also DeepFM can be seen as a combination of FNN and FM. """ def __init__(self, config, dataset): super(DeepFM, self).__init__(config, dataset) # load parameters info self.mlp_hidden_size = config["mlp_hidden_size"] self.dropout_prob = config["dropout_prob"] # define layers and loss self.fm = BaseFactorizationMachine(reduce_sum=True) size_list = [ self.embedding_size * self.num_feature_field ] + self.mlp_hidden_size self.mlp_layers = MLPLayers(size_list, self.dropout_prob) self.deep_predict_layer = nn.Linear( self.mlp_hidden_size[-1], 1 ) # Linear product to the final score self.sigmoid = nn.Sigmoid() self.loss = nn.BCEWithLogitsLoss() # parameters initialization self.apply(self._init_weights) def _init_weights(self, module): if isinstance(module, nn.Embedding): xavier_normal_(module.weight.data) elif isinstance(module, nn.Linear): xavier_normal_(module.weight.data) if module.bias is not None: constant_(module.bias.data, 0)
[docs] def forward(self, interaction): deepfm_all_embeddings = self.concat_embed_input_fields( interaction ) # [batch_size, num_field, embed_dim] batch_size = deepfm_all_embeddings.shape[0] y_fm = self.first_order_linear(interaction) + self.fm(deepfm_all_embeddings) y_deep = self.deep_predict_layer( self.mlp_layers(deepfm_all_embeddings.view(batch_size, -1)) ) y = y_fm + y_deep return y.squeeze(-1)
[docs] def calculate_loss(self, interaction): label = interaction[self.LABEL] output = self.forward(interaction) return self.loss(output, label)
[docs] def predict(self, interaction): return self.sigmoid(self.forward(interaction))