Source code for recbole.data.dataloader.user_dataloader

# @Time   : 2020/9/23
# @Author : Yushuo Chen
# @Email  : chenyushuo@ruc.edu.cn

# UPDATE
# @Time   : 2022/7/8, 2020/9/23, 2020/12/28
# @Author : Zhen Tian, Yushuo Chen, Xingyu Pan
# @email  : chenyuwuxinn@gmail.com, chenyushuo@ruc.edu.cn, panxy@ruc.edu.cn

"""
recbole.data.dataloader.user_dataloader
################################################
"""
import torch
from logging import getLogger
from recbole.data.dataloader.abstract_dataloader import AbstractDataLoader
from recbole.data.interaction import Interaction
import numpy as np


[docs]class UserDataLoader(AbstractDataLoader): """:class:`UserDataLoader` will return a batch of data which only contains user-id when it is iterated. Args: config (Config): The config of dataloader. dataset (Dataset): The dataset of dataloader. sampler (Sampler): The sampler of dataloader. shuffle (bool, optional): Whether the dataloader will be shuffle after a round. Defaults to ``False``. Attributes: shuffle (bool): Whether the dataloader will be shuffle after a round. However, in :class:`UserDataLoader`, it's guaranteed to be ``True``. """ def __init__(self, config, dataset, sampler, shuffle=False): self.logger = getLogger() if shuffle is False: shuffle = True self.logger.warning("UserDataLoader must shuffle the data.") self.uid_field = dataset.uid_field self.user_list = Interaction({self.uid_field: torch.arange(dataset.user_num)}) self.sample_size = len(self.user_list) super().__init__(config, dataset, sampler, shuffle=shuffle) def _init_batch_size_and_step(self): batch_size = self.config["train_batch_size"] self.step = batch_size self.set_batch_size(batch_size)
[docs] def collate_fn(self, index): index = np.array(index) return self.user_list[index]